matrix elasticity
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 9)

H-INDEX

25
(FIVE YEARS 4)

Author(s):  
Dmitry Yu Borin ◽  
Mikhail V Vaganov

Abstract First-order reversal curve (FORC) analysis allows one to investigate composite magnetic materials by decomposing the magnetic response of a whole sample into individual responses of the elementary objects comprising the sample. In this work, we apply this technique to analysing silicone elastomer composites reinforced with ferromagnetic microparticles possessing low intrinsic coercivity. Even though the material of such particles does not demonstrate significant magnetic hysteresis, the soft matrix of the elastomers allows for the translational mobility of the particles and enables their magnetomechanical hysteresis which renders into a wasp-waisted major magnetization loop of the whole sample. It is demonstrated that the FORC diagrams of the composites contain characteristic wing features arising from the collective hysteretic magnetization of the magnetically soft particles. The influence of the matrix elasticity and particle concentration on the shape of the wing feature is investigated, and an approach to interpreting experimental FORC diagrams of the magnetically soft magnetoactive elastomers is proposed. The experimental data are in qualitative agreement with the results of the simulation of the particle magnetization process obtained using a model comprised of two magnetically soft particles embedded in an elastic environment.


Author(s):  
Mohammad Samiei ◽  
Mahdieh Alipour ◽  
Khadijeh Khezri ◽  
Yalda Rahbar Saadat ◽  
Haleh Forouhandeh ◽  
...  

: Collagen is an important macromolecule of extracellular matrix (ECM) in bones, teeth, and temporomandibular joints. Mesenchymal stem cells (MSCs) interact with the components of the ECM such as collagen, proteoglycans, glycosaminoglycans (GAGs), and several proteins on behalf of variable matrix elasticity and bioactive cues. Synthetic collagen-based biomaterials could be effective scaffolds for regenerative dentistry applications due to mimicking of host tissues’ ECM. These biomaterials are biocompatible, biodegradable, readily available, and non-toxic to cells whose capability promotes cellular response and wound healing in the craniofacial region. Collagen could incorporate other biomolecules to induce mineralization in calcified tissues such as bone and tooth. Moreover, the addition of these molecules or other polymers to collagen-based biomaterials could enhance mechanical properties, which is important in load-bearing areas such as the mandible. A literature review was performed via reliable internet database (mainly PubMed) based on MeSH keywords. This review first describes the properties of collagen as a key protein in the structure of hard tissues. Then, it introduces different types of collagens, the correlation between collagen and MSCs, and the methods used to modify collagen in regenerative dentistry including recent progression on the regeneration of periodontium, dentin-pulp complex, and temporomandibular joint by applying collagen. Besides, the prospects and challenges of collagen-based biomaterials in the craniofacial region pointes out.


Biomaterials ◽  
2020 ◽  
Vol 230 ◽  
pp. 119647 ◽  
Author(s):  
Hiroyuki Ebata ◽  
Kousuke Moriyama ◽  
Thasaneeya Kuboki ◽  
Satoru Kidoaki

2020 ◽  
Vol 11 (2) ◽  
pp. 867 ◽  
Author(s):  
Matt S. Hepburn ◽  
Philip Wijesinghe ◽  
Luke G. Major ◽  
Jiayue Li ◽  
Alireza Mowla ◽  
...  

Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 50 ◽  
Author(s):  
Hashemzadeh ◽  
Allahverdi ◽  
Ghorbani ◽  
Soleymani ◽  
Kocsis ◽  
...  

Organ-on-a-chip technology has gained great interest in recent years given its ability to control the spatio-temporal microenvironments of cells and tissues precisely. While physical parameters of the respective niche such as microchannel network sizes, geometric features, flow rates, and shear forces, as well as oxygen tension and concentration gradients, have been optimized for stem cell cultures, little has been done to improve cell-matrix interactions in microphysiological systems. Specifically, detailed research on the effect of matrix elasticity and extracellular matrix (ECM) nanotopography on stem cell differentiation are still in its infancy, an aspect that is known to alter a stem cell’s fate. Although a wide range of hydrogels such as gelatin, collagen, fibrin, and others are available for stem cell chip cultivations, only a limited number of elasticities are generally employed. Matrix elasticity and the corresponding nanotopography are key factors that guide stem cell differentiation. Given this, we investigated the addition of gold nanowires into hydrogels to create a tunable biointerface that could be readily integrated into any organ-on-a-chip and cell chip system. In the presented work, we investigated the matrix elasticity (Young’s modulus, stiffness, adhesive force, and roughness) and nanotopography of gold nanowire loaded onto fibrin hydrogels using the bio-AFM (atomic force microscopy) method. Additionally, we investigated the capacity of human amniotic mesenchymal stem cells (hAMSCs) to differentiate into osteo- and chondrogenic lineages. Our results demonstrated that nanogold structured-hydrogels promoted differentiation of hAMSCs as shown by a significant increase in Collagen I and II production. Additionally, there was enhanced calcium mineralization activity and proteoglycans formation after a cultivation period of two weeks within microfluidic devices.


Polymer ◽  
2019 ◽  
Vol 162 ◽  
pp. 63-72 ◽  
Author(s):  
Andrii V. Bodnaruk ◽  
Alexander Brunhuber ◽  
Viktor M. Kalita ◽  
Mykola M. Kulyk ◽  
Peter Kurzweil ◽  
...  

2018 ◽  
Vol 6 (2) ◽  
pp. 025010
Author(s):  
Yu Bi ◽  
Xiaoming Zhang ◽  
Guobin Chen ◽  
Jun Liu ◽  
Jun Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document