scholarly journals A Kalirin Missense Mutation Enhances Dendritic RhoA Signaling and Leads to Regression of Cortical Dendritic Arbors Across Development

2021 ◽  
Author(s):  
MJ Grubisha ◽  
T Sun ◽  
SL Erickson ◽  
L Eisenman ◽  
S Chou ◽  
...  

ABSTRACTNormally, dendritic size is established prior to adolescence then remains relatively constant into adulthood due to a homeostatic balance between growth and retraction pathways. However, schizophrenia is characterized by accelerated reductions of cerebral cortex gray matter volume and onset of clinical symptoms during adolescence, with reductions in layer 3 pyramidal neuron dendritic length, complexity, and spine density identified in multiple cortical regions postmortem. Nogo receptor 1 (NGR1) activation of the GTPase RhoA is a major pathway restricting dendritic growth in the cerebral cortex. We show that the NGR1 pathway is stimulated by OMGp and requires the Rho guanine nucleotide exchange factor, Kalirin-9 (KAL9). Using a genetically encoded RhoA sensor, we demonstrate that a naturally occurring missense mutation in Kalrn, KAL-PT, that was identified in a schizophrenia cohort, confers enhanced RhoA activitation in neuronal dendrites compared to wildtype KAL. In mice containing this missense mutation at the endogenous locus there is an adolescent-onset reduction in dendritic length and complexity of layer 3 pyramidal neurons in the primary auditory cortex. Tissue density of dendritic spines was also reduced. Early adult mice with these structural deficts exhibited impaired detection of short gap durations. These findings provide a neuropsychiatric model of disease capturing how a mild genetic vulnerability may interact with normal developmental processes such that pathology only emerges around adolescence. This interplay between genetic susceptibility and normal adolescent development, both of which possess inherent individual variability, may contribute to heterogeneity seen in phenotypes in human neuropsychiatric disease.SIGNIFICANCE STATEMENTDendrites are long branching processes on neurons that contain small processes called spines that are the site of connections with other neurons, establishing cortical circuitry. Dendrites have long been considered stable structures, with rapid growth prior to adolescence followed by maintenance of size into adulthood. However, schizophrenia is characterized by accelerated reductions of cortical gray matter volume and onset of clinical symptoms during adolescence, with reductions in dendritic length present when examined after death. We show that dendrites retain the capacity for regression, and that a mild genetic vulnerability in a regression pathway leads to onset of structural impairments in previously formed dendrites across adolescence. This suggests that targeting specific regression pathways could potentially lead to new therapeutics for schizophrenia.

2021 ◽  
Vol 118 (49) ◽  
pp. e2022546118
Author(s):  
Melanie J. Grubisha ◽  
Tao Sun ◽  
Leanna Eisenman ◽  
Susan L. Erickson ◽  
Shinny-yi Chou ◽  
...  

Normally, dendritic size is established prior to adolescence and then remains relatively constant into adulthood due to a homeostatic balance between growth and retraction pathways. However, schizophrenia is characterized by accelerated reductions of cerebral cortex gray matter volume and onset of clinical symptoms during adolescence, with reductions in layer 3 pyramidal neuron dendritic length, complexity, and spine density identified in multiple cortical regions postmortem. Nogo receptor 1 (NGR1) activation of the GTPase RhoA is a major pathway restricting dendritic growth in the cerebral cortex. We show that the NGR1 pathway is stimulated by OMGp and requires the Rho guanine nucleotide exchange factor Kalirin-9 (KAL9). Using a genetically encoded RhoA sensor, we demonstrate that a naturally occurring missense mutation in Kalrn, KAL-PT, that was identified in a schizophrenia cohort, confers enhanced RhoA activitation in neuronal dendrites compared to wild-type KAL. In mice containing this missense mutation at the endogenous locus, there is an adolescent-onset reduction in dendritic length and complexity of layer 3 pyramidal neurons in the primary auditory cortex. Spine density per unit length of dendrite is unaffected. Early adult mice with these structural deficits exhibited impaired detection of short gap durations. These findings provide a neuropsychiatric model of disease capturing how a mild genetic vulnerability may interact with normal developmental processes such that pathology only emerges around adolescence. This interplay between genetic susceptibility and normal adolescent development, both of which possess inherent individual variability, may contribute to heterogeneity seen in phenotypes in human neuropsychiatric disease.


2012 ◽  
Vol 43 (01) ◽  
Author(s):  
M Obermann ◽  
R Rodriguez-Raecke ◽  
S Nägel ◽  
D Holle ◽  
N Theysohn ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Malo Gaubert ◽  
Catharina Lange ◽  
Antoine Garnier-Crussard ◽  
Theresa Köbe ◽  
Salma Bougacha ◽  
...  

Abstract Background White matter hyperintensities (WMH) are frequently found in Alzheimer’s disease (AD). Commonly considered as a marker of cerebrovascular disease, regional WMH may be related to pathological hallmarks of AD, including beta-amyloid (Aβ) plaques and neurodegeneration. The aim of this study was to examine the regional distribution of WMH associated with Aβ burden, glucose hypometabolism, and gray matter volume reduction. Methods In a total of 155 participants (IMAP+ cohort) across the cognitive continuum from normal cognition to AD dementia, FLAIR MRI, AV45-PET, FDG-PET, and T1 MRI were acquired. WMH were automatically segmented from FLAIR images. Mean levels of neocortical Aβ deposition (AV45-PET), temporo-parietal glucose metabolism (FDG-PET), and medial-temporal gray matter volume (GMV) were extracted from processed images using established AD meta-signature templates. Associations between AD brain biomarkers and WMH, as assessed in region-of-interest and voxel-wise, were examined, adjusting for age, sex, education, and systolic blood pressure. Results There were no significant associations between global Aβ burden and region-specific WMH. Voxel-wise WMH in the splenium of the corpus callosum correlated with greater Aβ deposition at a more liberal threshold. Region- and voxel-based WMH in the posterior corpus callosum, along with parietal, occipital, and frontal areas, were associated with lower temporo-parietal glucose metabolism. Similarly, lower medial-temporal GMV correlated with WMH in the posterior corpus callosum in addition to parietal, occipital, and fontal areas. Conclusions This study demonstrates that local white matter damage is correlated with multimodal brain biomarkers of AD. Our results highlight modality-specific topographic patterns of WMH, which converged in the posterior white matter. Overall, these cross-sectional findings corroborate associations of regional WMH with AD-typical Aß deposition and neurodegeneration.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yoko Shigemoto ◽  
Daichi Sone ◽  
Miho Ota ◽  
Norihide Maikusa ◽  
Masayo Ogawa ◽  
...  

2019 ◽  
Vol 15 (7) ◽  
pp. P207-P209
Author(s):  
Oriol Grau-Rivera ◽  
Grégory Operto ◽  
Carles Falcon ◽  
Raffaele Cacciaglia ◽  
Gonzalo Sánchez-Benavides ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan Cesar D. Pineda ◽  
Keisuke Kokubun ◽  
Toshiharu Ikaga ◽  
Yoshinori Yamakawa

AbstractCountless studies in animals have shown how housing environments and behaviors can significantly affect anxiety and brain health, giving valuable insight as to whether this is applicable in the human context. The relationship between housing, behavior, brain health, and mental wellbeing in humans remains poorly understood. We therefore explored the interaction of housing quality, weekend/holiday sedentary behavior, brain structure, and anxiety in healthy Japanese adults. Whole-brain structural magnetic resonance imaging (MRI) methods based on gray matter volume and fractional anisotropy were used as markers for brain health. Correlation tests were conducted, and then adjusted for multiple comparisons using the False Discovery Rate method. Housing quality and weekend/holiday sedentary behavior were associated with fractional anisotropy, but not with gray matter volume. Fractional anisotropy showed significant associations with anxiety. Lastly, both weekend/holiday sedentary behavior and housing quality were indirectly associated with anxiety through fractional anisotropy. These results add to the limited evidence surrounding the relationship among housing, behavior, and the brain. Furthermore, these results show that behavior and housing qualities can have an indirect impact on anxiety through neurobiological markers such as fractional anisotropy.


Sign in / Sign up

Export Citation Format

Share Document