photovoltaic effects
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 29)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
Vol 1 (2) ◽  
pp. 131-180
Author(s):  
Jabir Zamir Minhas ◽  
Md Al Mahadi Hasan ◽  
Ya Yang

Innovations in nanogenerator technology foster pervading self-power devices for human use, environmental surveillance, energy transfiguration, intelligent energy storage systems, and wireless networks. Energy harvesting from ubiquitous ambient mechanical, thermal, and solar energies by nanogenerators is the hotspot of the modern electronics research era. Ferroelectric materials, which show spontaneous polarization, are reversible when exposed to the external electric field, and are responsive to external stimuli of strain, heat, and light are promising for modeling nanogenerators. This review demonstrates ferroelectric material-based nanogenerators, practicing the discrete and coupled pyroelectric, piezoelectric, triboelectric, and ferroelectric photovoltaic effects. Their working mechanisms and way of optimizing their performances, exercising the conjunction of effects in a standalone device, and multi-effects coupled nanogenerators are greatly versatile and reliable and encourage resolution in the energy crisis. Additionally, the expectancy of productive lines of future ensuing and propitious application domains are listed.


2D Materials ◽  
2021 ◽  
Author(s):  
ZhuangEn Fu ◽  
Josh W. Hill ◽  
Bruce Parkinson ◽  
Caleb M. Hill ◽  
Jifa Tian

Abstract Transition metal dichalcogenide (TMD) heterostructures are promising for a variety of applications in photovoltaics and photosensing. Successfully exploiting these heterostructures will require an understanding of their layer-dependent electronic structures. However, there is no experimental data demonstrating the layer-number dependence of photovoltaic effects (PVEs) in vertical TMD heterojunctions. Here, by combining scanning electrochemical cell microscopy (SECCM) with optical probes, we report the first layer-dependence of photocurrents in WSe2/WS2 vertical heterostructures as well as in pristine WS2 and WSe2 layers. For WS2, we find that photocurrents increase with increasing layer thickness, whereas for WSe2 the layer dependence is more complex and depends on both the layer number and applied bias (Vb). We further find that photocurrents in the WS2/WSe2 heterostructures exhibit anomalous layer and material-type dependent behaviors. Our results advance the understanding of photoresponse in atomically thin WSe2/WS2 heterostructures and pave the way to novel nanoelectronic and optoelectronic devices.


2021 ◽  
Vol 15 (6) ◽  
Author(s):  
Hao Tang ◽  
Bowen Shi ◽  
Yangyang Wang ◽  
Chen Yang ◽  
Shiqi Liu ◽  
...  

2021 ◽  
pp. 109703
Author(s):  
Mingxin Bian ◽  
Xiaobin Tang ◽  
Zhiheng Xu ◽  
Zhenfeng Hou ◽  
Zicheng Yuan ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shiguo Han ◽  
Maofan Li ◽  
Yi Liu ◽  
Wuqian Guo ◽  
Mao-Chun Hong ◽  
...  

AbstractIn terms of strong light-polarization coupling, ferroelectric materials with bulk photovoltaic effects afford a promising avenue for optoelectronic devices. However, due to severe polarization deterioration caused by leakage current of photoexcited carriers, most of ferroelectrics are merely capable of absorbing 8–20% of visible-light spectra. Ferroelectrics with the narrow bandgap (<2.0 eV) are still scarce, hindering their practical applications. Here, we present a lead-iodide hybrid biaxial ferroelectric, (isopentylammonium)2(ethylammonium)2Pb3I10, which shows large spontaneous polarization (~5.2 μC/cm2) and a narrow direct bandgap (~1.80 eV). Particularly, the symmetry breaking of 4/mmmFmm2 species results in its biaxial attributes, which has four equivalent polar directions. Accordingly, exceptional in-plane photovoltaic effects are exploited along the crystallographic [001] and [010] axes directions inside the crystallographic bc-plane. The coupling between ferroelectricity and photovoltaic effects endows great possibility toward self-driven photodetection. This study sheds light on future optoelectronic device applications.


Sign in / Sign up

Export Citation Format

Share Document