scholarly journals Ferroelectric Materials Based Coupled Nanogenerators

2021 ◽  
Vol 1 (2) ◽  
pp. 131-180
Author(s):  
Jabir Zamir Minhas ◽  
Md Al Mahadi Hasan ◽  
Ya Yang

Innovations in nanogenerator technology foster pervading self-power devices for human use, environmental surveillance, energy transfiguration, intelligent energy storage systems, and wireless networks. Energy harvesting from ubiquitous ambient mechanical, thermal, and solar energies by nanogenerators is the hotspot of the modern electronics research era. Ferroelectric materials, which show spontaneous polarization, are reversible when exposed to the external electric field, and are responsive to external stimuli of strain, heat, and light are promising for modeling nanogenerators. This review demonstrates ferroelectric material-based nanogenerators, practicing the discrete and coupled pyroelectric, piezoelectric, triboelectric, and ferroelectric photovoltaic effects. Their working mechanisms and way of optimizing their performances, exercising the conjunction of effects in a standalone device, and multi-effects coupled nanogenerators are greatly versatile and reliable and encourage resolution in the energy crisis. Additionally, the expectancy of productive lines of future ensuing and propitious application domains are listed.

2013 ◽  
Vol 278-280 ◽  
pp. 307-314 ◽  
Author(s):  
Rong Zhi Song ◽  
Xiang Heng Fu ◽  
Mao Lin Cai

Environmental pollution and energy crisis urge people to explore new power devices without burning fossil fuels and pollutant emission. Air powered engine (APE) is among these power devices. The medium and power source of APE is compressed air whose expansion makes it possible for APE to output work. Based on the principal and working process of APE, the mathematic model is established and afterwards made dimensionless. On the basis of the simulation of the non-dimensional mathematic model, the influences of the non-dimensional cylinder stroke and Kagawa coefficient on APE’s performances are analyzed


Author(s):  
Jack Binns ◽  
Garry J McIntyre ◽  
Simon Parsons

The pressure- and temperature-dependent phase transitions in the ferroelectric material rubidium hydrogen sulfate (RbHSO4) are investigated by a combination of neutron Laue diffraction and high-pressure X-ray diffraction. The observation of disordered O-atom positions in the hydrogen sulfate anions is in agreement with previous spectroscopic measurements in the literature. Contrary to the mechanism observed in other hydrogen-bonded ferroelectric materials, H-atom positions are well defined and ordered in the paraelectric phase. Under applied pressure RbHSO4undergoes a ferroelectric transition before transforming to a third, high-pressure phase. The symmetry of this phase is revised to the centrosymmetric space groupP21/c, resulting in the suppression of ferroelectricity at high pressure.


2021 ◽  
Author(s):  
Tadej Rojac

Macroscopic nonlinearity and hysteresis observed in the piezoelectric and dielectric responses of ferroelectric materials to external stimuli are commonly attributed to localized displacements of domain walls (DWs). The link between the macroscopic response and microscopic DW dynamics is provided by the well-known Rayleigh relations, extensively used to quantify the electrical and electromechanical behavior of ferroelectric ceramics and thin films under subswitching conditions. In this chapter, I will present an intriguing case where DWs exhibit enhanced electrical conductivity with respect to the bulk conductivity. By combining experimental data and modeling, it will be shown that the local conductivity, related to accumulation of charged points defect at DWs, does not only affect DW dynamics through DW-defect pinning interactions, as we may expect, but goes beyond it by affecting the macroscopic nonlinearity and hysteresis in a more complex manner. The major characteristics and implications of the underlying nonlinear Maxwell-Wagner piezoelectric relaxation, triggered by the presence and dynamics of conducting DWs, will be presented, reviewed and discussed in the framework of systematic multiscale analyses on BiFeO3 ceramics. The result may have implications in the development of promising BiFeO3-based compositions for high-temperature piezoelectric applications.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1208
Author(s):  
Chankeun Yoon ◽  
Changhwan Shin

Since the discovery of ferroelectricity in HfO2-based materials which are comparable to the complementary metal-oxide–semiconductor (CMOS) fabrication process—a negative capacitance effect in the HfO2-based materials has been actively studied. Owing to nonuniform polarization-switching (which is originated from the polycrystalline structures of HfO2-based ferroelectric materials), the formation of multi-domains in the HfO2-based materials is inevitable. In previous studies, perovskite-based ferroelectric materials (which is not compatible to CMOS fabrication process) were utilized to improve the electrical properties of a nanoelectromechanical (NEM) relay. In this study, the effects of a multi-domain HfO2-based ferroelectric material on the electrical characteristics of an NEM relay were theoretically examined. Specifically, the number of domains, domain inhomogeneity and ferroelectric thickness of the multi-domain ferroelectric material were modulated and subsequently, its corresponding results were discussed. It was observed that the switching voltage variation was decreased with increasing the number of domains and decreasing domain inhomogeneity. In addition, the switching voltage was decreased with increasing ferroelectric thickness, owing to enhanced voltage amplification.


2018 ◽  
Vol 32 (32) ◽  
pp. 1850358 ◽  
Author(s):  
Sweety Supriya ◽  
Sunil Kumar ◽  
Lagen Kumar Pradhan ◽  
Rabichandra Pandey ◽  
Manoranjan Kar

Electrical properties of a series of nanocrystalline aluminium-substituted cobalt ferrite CoAl[Formula: see text]Fe[Formula: see text]O4 (CAFO) with x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5 have been explored. The electrical parameters have been measured by employing impedance and techniques. The impedance has measured as a function of frequency and temperature for all the samples. The impedance increases with the increase in Al concentration in CAFO. Cobalt ferrite is yet to be verified as a ferroelectric material. However, the electrical properties reported here are similar to conventional ferroelectric materials. Multiple (two) electrical phase transitions have been observed, the two transition temperatures are identified as T[Formula: see text] and T[Formula: see text] i.e., one is dipole relaxation transition (T[Formula: see text]) and other one is electrical phase transition temperature. Both AC and DC measurements indicate the transition temperatures.


2018 ◽  
Vol 1 (02) ◽  
pp. 54-59
Author(s):  
Agus Ismangil ◽  
Teguh Puja Negara

One of the studies that recently attracted the attention of physicists is research on ferroelectric material because this material is very promising for the development of new generation devices in connection with the unique properties it has. Ferroelectric materials, especially those based on a mixture of lithium tantalite (LiTaO3), are expected to be applied to the infrared sensor. Lithium tantalate (LiTaO3) is a ferroelectric material that is unique in terms of pyroelectric and piezoelectric properties that are integrated with good mechanical and chemical stability. Therefore LiTaO3 is often used for several applications such as electro-optical modulators and pyroelectric detectors. LiTaO3 is a non-hygroscopic crystal, colorless, soluble in water, has a high transmission rate and does not easily damage its optical properties. LiTaO3 is a material that has a high dielectric constant and a high load storage capacity. This research has succeeded in determining the band gap energy of the LiTaO3 film in the rubidium chamber obtained in the range of values 2.02-2.98 eV as shown in figure 4. The LiTaO3 film after the annealing process at a temperature of 650 oC, has the highest band gap energy of 2.98 eV. Large energy is needed on the electrons to be excited from the valence band to the conduction band. Whereas in the LiTaO3 film after an annealing process of 800 oC, the band gap energy obtained is 2.02 eV. This makes it easier for electrons to be excited from the valence band to the conduction band because the energy needed is not too large.


2002 ◽  
Vol 748 ◽  
Author(s):  
R. S. Katiyar ◽  
A. Dixit ◽  
M. Jain ◽  
A. A. Savvinov ◽  
P. S. Dobal

ABSTRACTDuring a ferroelectric phase transition or domain rearrangement, ions or molecules in a ferroelectric material move in a highly cooperative manner from their initial lattice positions into the final positions they occupy and the collective response results into a “soft” lattice vibrational mode. Moreover, the structural changes are always accompanied by at least a few other changes in the normal mode behavior of the material. In the present work, Raman spectroscopy is conveniently employed to study such vibrational modes and other related phenomena in ferroelectric materials at the sub-microscale levels. We have investigated ferroelectric thin films of various lead and barium based perovskites prepared by sol-gel technique. The effect of processing conditions, A- and B- site substitutions, and size dependence on their Raman spectra were analyzed in terms of the structure-property correlations.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Saber Mohammadi ◽  
Akram Khodayari ◽  
Arash Ahmadi

Electrocaloric response of the PMN-10PT is measured experimentally and compared with the numerical results. Based on the compatibility of the experimental and numerical results, feasibility of using ferroelectric materials as an electrothermal transducer has been investigated. In this study, electrocaloric response of three different ferroelectric capacitors (PMN-10PT, PMN-25PT, and PZN-4.5PT) under an applied periodic electric field have been investigated. Alternative switching of the electrocaloric elements with specific boundary conditions generates a directed heat flux. It can be concluded that each ferroelectric material can be used as a transducer in a special temperature range that in which it has good electrocaloric response.


Lead magnesium niobate-lead titanate (PMN-PT) is an important and high performance piezoelectric and pyroelectric relaxor material having wide range of applications in infrared sensor devices. Present work studies the fabrication and dielectric characteristics of PMN-PT in the bulk form. The PMN-PT bulk material was prepared in sol-gel method and subsequently irradiated with heavy ion oxygen. The materials were analyzed and determined that the relaxor ferroelectric material indicated changes in its dielectric constant and pyroelectric coefficient after irradiation. Due to the radiation fluent of 1×1016 ions/cm2 , the dielectric constant of the material increased uniformly, while its pyroelectric coefficient showed a sharp increased to the value of 5×10-9 μC/cm2 °C with increase in temperature. Its dielectric constants showed increase in values of 527 μC/cm2 °C at 50°C, 635 μC/ cm2 °C at 60°C and 748 μC/cm2 °C at 70°C. Properties such as the material impedance, admittance and modulus were investigated for changes in properties which became evident after irradiation. In this paper effect of oxygen ion irradiation on the LiTaO3 and two commercial samples BM 300 and BM 941 are also reported and analyzed. All these bulk materials were functional even after irradiation and was showing enhancement in some of the key characteristics of ferroelectric material.


Nanoscale ◽  
2020 ◽  
Vol 12 (35) ◽  
pp. 18400-18408
Author(s):  
Zonghua Wang ◽  
Guangmeng Qu ◽  
Chenggang Wang ◽  
Xixi Zhang ◽  
Guotao Xiang ◽  
...  

High-performance energy storage systems are becoming essential to cope with the possible energy crisis in the future.


Sign in / Sign up

Export Citation Format

Share Document