scholarly journals Effects Induced by Osteophytes on the Strain Distribution in the Vertebral Body Under Different Loading Configurations

Author(s):  
Daniele Marras ◽  
Marco Palanca ◽  
Luca Cristofolini

The mechanical consequences of osteophytes are not completely clear. We aimed to understand whether and how the presence of an osteophyte perturbs strain distribution in the neighboring bone. The scope of this study was to evaluate the mechanical behavior induced by the osteophytes using full-field surface strain analysis in different loading configurations. Eight thoracolumbar segments, containing a vertebra with an osteophyte and an adjacent vertebra without an osteophyte (control), were harvested from six human spines. The position and size of the osteophytes were evaluated using clinical computed tomography imaging. The spine segments were biomechanically tested in the elastic regime in different loading configurations while the strains over the frontal and lateral surface of vertebral bodies were measured using digital image correlation. The strain fields in the vertebrae with and without osteophytes were compared. The correlation between osteophyte size and strain alteration was explored. The strain fields measured in the vertebrae with osteophytes were different from the control ones. In pure compression, we observed a mild trend between the size of the osteophyte and the strain distribution (R2 = 0.32, p = 0.15). A slightly stronger trend was found for bending (R2 = 0.44, p = 0.075). This study suggests that the osteophytes visibly perturb the strain field in the nearby vertebral area. However, the effect on the surrounding bone is not consistent. Indeed, in some cases the osteophyte shielded the neighboring bone, and in other cases, the osteophyte increased the strains.

Author(s):  
Ievgen Levadnyi ◽  
Jan Awrejcewicz ◽  
Yan Zhang ◽  
Yaodong Gu

Bone fracture, formation and adaptation are related to mechanical strains in bone. Assessing bone stiffness and strain distribution under different loading conditions may help predict diseases and improve surgical results by determining the best conditions for long-term functioning of bone-implant systems. In this study, an experimentally wide range of loading conditions (56) was used to cover the directional range spanned by the hip joint force. Loads for different stance configurations were applied to composite femurs and assessed in a material testing machine. The experimental analysis provides a better understanding of the influence of the bone inclination angle in the frontal and sagittal planes on strain distribution and stiffness. The results show that the surface strain magnitude and stiffness vary significantly under different loading conditions. For the axial compression, maximal bending is observed at the mid-shaft, and bone stiffness is also maximal. The increased inclination leads to decreased stiffness and increased magnitude of maximum strain at the distal end of the femur. For comparative analysis of results, a three-dimensional, finite element model of the femur was used. To validate the finite element model, strain gauges and digital image correlation system were employed. During validation of the model, regression analysis indicated robust agreement between the measured and predicted strains, with high correlation coefficient and low root-mean-square error of the estimate. The results of stiffnesses obtained from multi-loading conditions experiments were qualitatively compared with results obtained from a finite element analysis of the validated model of femur with the same multi-loading conditions. When the obtained numerical results are qualitatively compared with experimental ones, similarities can be noted. The developed finite element model of femur may be used as a promising tool to estimate proximal femur strength and identify the best conditions for long-term functioning of the bone-implant system in future study.


2010 ◽  
Vol 24-25 ◽  
pp. 115-120 ◽  
Author(s):  
Michael R.L. Gower ◽  
Richard M. Shaw

This paper details work undertaken towards the development of a standard test method for the biaxial response of planar cruciform specimens manufactured from carbon fibre-reinforced plastic (CFRP) laminates and subject to tension-tension loading. Achieving true biaxial failure in a cruciform specimen without the need for the inclusion of a stress raiser, such as a hole, in the gauge-section, is a subject attracting much research globally and is by no means a trivial exercise. Coupon designs were modelled using finite element analysis (FEA) in order to predict the stress and strain distributions in the central region of the specimen. An Instron biaxial strong-floor test machine was used to test the specimens. Strain gauges were used to measure the strain in the specimen arms and to assess the degree of bending. Digital image correlation (DIC) was used to measure the full-field strain distribution in the central gauge-section of the specimen and this was compared to values measured using strain gauges. The strain readings obtained from strain gauges, DIC and FEA predictions were in good agreement and showed that the strain distribution was uniform in the central gauge-section, but that strain concentrations existed around the tapered thickness zone. These regions of strain concentration resulted in interlaminar failure and delamination of the laminate propagating into the specimen arms.


2020 ◽  
Vol 1 (4) ◽  
pp. 174-192
Author(s):  
Nedaa Amraish ◽  
Andreas Reisinger ◽  
Dieter H. Pahr

Digital image correlation (DIC) systems have been used in many engineering fields to obtain surface full-field strain distribution. However, noise affects the accuracy and precision of the measurements due to many factors. The aim of this study was to find out how different filtering options; namely, simple mean filtering, Gaussian mean filtering and Gaussian low-pass filtering (LPF), reduce noise while maintaining the full-field information based on constant, linear and quadratic strain fields. Investigations are done in two steps. First, linear and quadratic strain fields with and without noise are simulated and projected to discrete measurement points which build up strain window sizes consisting of 6×5, 12×11, and 26×17 points. Optimal filter sizes are computed for each filter strategy, strain field type, and strain windows size, with minimal impairment of the signal information. Second, these filter sizes are used to filter full-field strain distributions of steel samples under tensile tests by using an ARAMIS DIC system to show their practical applicability. Results for the first part show that for a typical 12×11 strain window, simple mean filtering achieves an error reduction of 66–69%, Gaussian mean filtering of 72–75%, and Gaussian LPF of 66–69%. If optimized filters are used for DIC measurements on steel samples, the total strain error can be reduced from initial 240−300 μstrain to 100–150 μstrain. In conclusion, the noise-floor of DIC signals is considerable and the preferable filters were a simple mean with s*¯ = 2, a Gaussian mean with σ*¯ = 1.7, and a Gaussian LPF with D0*¯ = 2.5 in the examined cases.


2019 ◽  
Author(s):  
Harshad M Paranjape ◽  
Kenneth I. Aycock ◽  
Craig Bonsignore ◽  
Jason D. Weaver ◽  
Brent A. Craven ◽  
...  

We implement an approach using Bayesian inference and machine learning to calibrate the material parameters of a constitutive model for the superelastic deformation of NiTi shape memory alloy. We use a diamond-shaped specimen geometry that is suited to calibrate both tensile and compressive material parameters from a single test. We adopt the Bayesian inference calibration scheme to take full-field surface strain measurements obtained using digital image correlation together with global load data as an input for calibration. The calibration is performed by comparing these two experimental quantities of interest with the corresponding results from a simulation library built with the superelastic forward finite element model. We present a machine learning based approach to enrich the simulation library using a surrogate model. This improves the calibration accuracy to the extent permitted by the accuracy of the underlying material model and also improves the computational efficiency. We demonstrate, verify, and partially validate the calibration results through various examples. We also demonstrate how the uncertainty in the calibrated superelastic material parameters can propagate to a subsequent simulation of fatigue loading. This approach is versatile and can be used to calibrate other models of superelastic deformation from data obtained using various modalities. This probabilistic calibration approach can become an integral part of a framework to assess and communicate the credibility of simulations performed in the design of superelastic NiTi articles such as medical devices. The knowledge obtained from this calibration approach is most effective when the limitations of the underlying model and the suitability of the training data used to calibrate the model are understood and communicated.


2020 ◽  
Vol 10 (2) ◽  
pp. 468 ◽  
Author(s):  
Zhifeng Qi ◽  
Zhongqiang Shan ◽  
Weihao Ma ◽  
Linan Li ◽  
Shibin Wang ◽  
...  

Nanoscale silicon film electrodes in Li-ion battery undergo great deformations leading to electrochemical and mechanical failures during repeated charging-discharging cycles. In-situ experimental characterization of the stress/strain in those electrodes still faces big challenges due to remarkable complexity of stress/strain evolution while it is still hard to predict the association between the electrode cycle life and the measurable mechanical parameters. To quantificationally investigate the evolution of the mechanical parameters, we develop a new full field 3D measurement method combining digital image correlation with laser confocal profilometry and propose a strain criterion of the failure based on semi-quantitative analysis via mean strain gradient (MSG). The experimental protocol and results illustrate that the revolution of MSG correlates positively with battery capacity decay, which may inspire future studies in the field of film electrodes.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 499 ◽  
Author(s):  
Jan Podroužek ◽  
Marco Marcon ◽  
Krešimir Ninčević ◽  
Roman Wan-Wendner

The aim of this paper is to introduce and characterize, both experimentally and numerically, three classes of non-traditional 3D infill patterns at three scales as an alternative to classical 2D infill patterns in the context of additive manufacturing and structural applications. The investigated 3D infill patterns are biologically inspired and include Gyroid, Schwarz D and Schwarz P. Their selection was based on their beneficial mechanical properties, such as double curvature. They are not only known from nature but also emerge from numerical topology optimization. A classical 2D hexagonal pattern has been used as a reference. The mechanical performance of 14 cylindrical specimens in compression is quantitatively related to stiffness, peak load and weight. Digital image correlation provides accurate full-field deformation measurements and insights into periodic features of the surface strain field. The associated variability, which is inherent to the production and testing process, has been evaluated for 3 identical Gyroid specimens. The nonlinear material model for the preliminary FEM analysis is based on tensile test specimens with 3 different slicing strategies. The 3D infill patterns are generally useful when the extrusion orientation cannot be aligned with the build orientation and the principal stress field, i.e., in case of generative design, such as the presented branching structure, or any complex shape and boundary condition.


Author(s):  
Yue Zhang ◽  
Jianfeng Shi ◽  
Jinyang Zheng

Electrofusion joint plays an important role in connecting polyethylene (PE) pipe. In our previous study, penetrating crack failure through the fitting with an angle of about 70° was observed, and axial stress was found to be an important factor in the crack propagation. In this paper, experiments were carried out to study the crack propagation phenomena of the electrofusion joint of PE pipe. Digital Image Correlation (DIC) method was used to measure the displacement on specimen’s surface, as well as full-field strain distribution, based on which the J-integral of the crack tip was calculated. Besides, a finite element numerical simulation was conducted, and its accuracy was verified by experimental J-integral value. Through combination of experimental observations and finite element method, the phenomenon that the angle between crack propagation direction and tube axial is about 70° is detailed analysed. By comparison and analysis of the testing results, critical J-integral value during crack propagation is determined. Furthermore, critical J-integral value of crack propagation in electrofusion joint is predicted.


2017 ◽  
Vol 741 ◽  
pp. 138-143 ◽  
Author(s):  
Norimitsu Koga ◽  
Osamu Umezawa

Digital image correlation (DIC) method is a convenient strain analysis method calculating strain from the difference of images between before and after deformation and shows an advantage to apply to any deformation mode or materials as long as significant contrast. We reviewed basic principles of DIC method and then demonstrated strain distribution in tensile deformed ferritic steel and cyclic deformed tempered martensitic steel. Strain distribution in tensile deformed ferritic steel becomes inhomogeneous with lowering temperature due to restriction of slip systems at low temperature. Strain distribution around a fatigue crack in cyclic deformed tempered martensitic steel was visualized by DIC analysis for replica film and strain concentrated on crack tip same as previous report in DIC analysis for specimen surface, which suggests that strain distribution obtained from replica film has an enough reliability. From these results, it can be concluded that DIC analysis is effective method to investigate local deformation and relation between local deformation and fracture behavior in metal materials.


2015 ◽  
Vol 732 ◽  
pp. 179-182
Author(s):  
Martin Hagara ◽  
Róbert Huňady ◽  
Matúš Kalina

The contribution deals with the investigation of the influence of facet size and smoothing on the results obtained by low-speed digital image correlation (DIC) system by strain analysis performed on specimen with a small hole loaded by tension loading. In conclusion the obtained results are verified by a numerical solution using finite element method.


Sign in / Sign up

Export Citation Format

Share Document