ixodes holocyclus
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Manuel Rodriguez-Valle ◽  
Sonia McAlister ◽  
Paula M. Moolhuijzen ◽  
Mitchell Booth ◽  
Kim Agnew ◽  
...  

Venom producing animals are ubiquitously disseminated among vertebrates and invertebrates such as fish, snakes, scorpions, spiders, and ticks. Of the ~890 tick species worldwide, 27 have been confirmed to cause paralysis in mammalian hosts. The Australian paralysis tick (Ixodes holocyclus) is the most potent paralyzing tick species known. It is an indigenous three host tick species that secretes potent neurotoxins known as holocyclotoxins (HTs). Holocyclotoxins cause a severe and harmful toxicosis leading to a rapid flaccid paralysis which can result in death of susceptible hosts such as dogs. Antivenins are generally polyclonal antibody treatments developed in sheep, horses or camels to administer following bites from venomous creatures. Currently, the methods to prevent or treat tick paralysis relies upon chemical acaricide preventative treatments or prompt removal of all ticks attached to the host followed by the administration of a commercial tick-antiserum (TAS) respectively. However, these methods have several drawbacks such as poor efficacies, non-standardized dosages, adverse effects and are expensive to administer. Recently the I. holocyclus tick transcriptome from salivary glands and viscera reported a large family of 19 holocyclotoxins at 38-99% peptide sequence identities. A pilot trial demonstrated that correct folding of holocyclotoxins is needed to induce protection from paralysis. The immunogenicity of the holocyclotoxins were measured using commercial tick antiserum selecting HT2, HT4, HT8 and HT11 for inclusion into the novel cocktail vaccine. A further 4 HTs (HT1, HT12, HT14 and HT17) were added to the cocktail vaccine to ensure that the sequence variation among the HT protein family was encompassed in the formulation. A second trial comparing the cocktail of 8 HTs to a placebo group demonstrated complete protection from tick challenge. Here we report the first successful anti-venom vaccine protecting dogs from tick paralysis.


Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1030
Author(s):  
Ala E. Tabor

Tick vaccine research in Australia has demonstrated leadership worldwide through the development of the first anti-tick vaccine in the 1990s. Australia’s Commonwealth Scientific and Industrial Research Organisation’s (CSIRO) research led to the development of vaccines and/or precursors of vaccines (such as crude extracts) for both the cattle tick and the paralysis tick. CSIRO commercialised the Bm86 vaccine in the early 1990s for Rhipicephalus australis; however, issues with dosing and lack of global conservation led to the market closure of Tick-GARD in Australia. New research programs arose both locally and globally. The Australian paralysis tick Ixodes holocyclus has perplexed research veterinarians since the 1920s; however, not until the 2000s did biotechnology exist to elucidate the neurotoxin—holocyclotoxin family of toxins leading to a proof of concept vaccine cocktail. This review revisits these discoveries and describes tributes to deceased tick vaccine protagonists in Australia, including Sir Clunies Ross, Dr Bernard Stone and Dr David Kemp.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ram K. Raghavan ◽  
Z. Koestel ◽  
R. Ierardi ◽  
A. Townsend Peterson ◽  
Marlon E. Cobos

AbstractThe eastern paralysis tick, Ixodes holocyclus is one of two ticks that cause potentially fatal tick paralysis in Australia, and yet information on the full extent of its present or potential future spatial distribution is not known. Occurrence data for this tick species collected over the past two decades, and gridded environmental variables at 1 km2 resolution representing climate conditions, were used to derive correlative ecological niche models to predict the current and future potential distribution. Several hundreds of candidate models were constructed with varying combinations of model parameters, and the best-fitting model was chosen based on statistical significance, omission rate, and Akaike Information Criterion (AICc). The best-fitting model matches the currently known distribution but also extends through most of the coastal areas in the south, and up to the Kimbolton peninsula in Western Australia in the north. Highly suitable areas are present around south of Perth, extending towards Albany, Western Australia. Most areas in Tasmania, where the species is not currently present, are also highly suitable. Future spatial distribution of this tick in the year 2050 indicates moderate increase in climatic suitability from the present-day prediction but noticeably also moderate to low loss of climatically suitable areas elsewhere.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 400
Author(s):  
Amonrat Panthawong ◽  
Stephen L. Doggett ◽  
Theeraphap Chareonviriyaphap

Ultrasonic pest repellers are often promoted as a means of protecting people and pets from the bites of hematophagous arthropods, such as ticks. However, to date, there has been no published research on the effectiveness of these devices against the Australian paralysis tick, Ixodes holocyclus Neumann. The purpose of this study was to test the effectiveness of nine ultrasonic devices against female I. holocyclus. Two arenas were constructed, one for the test (with the ultrasonic device) and one for the control (no device). Each arena had a test and an escape chamber, connected by a corridor. Twenty ticks were placed in each test chamber. After the ultrasonic device was operated for 1 h, the number of ticks in both chambers was recorded. Ten replicates were conducted for each device. The average number of ticks that moved from the test to the escape chamber was greater in all the test arenas, with three devices being statistically different from the control. However, the highest percent of ticks that escaped was only 19.5%. This amount is insufficient to offer adequate protection against tick bites and this study adds further weight to previous investigations that ultrasonic devices should not be employed in pest management.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Kingsley Uchenna Ozioko ◽  
Chris Ikem Okoye ◽  
Patience Obiageli Ubachukwu ◽  
Raymond Awudu Agbu ◽  
Bede Izuchukwu Ezewudo ◽  
...  

Abstract Background Wildlife reservoirs not only act as a source of infection for vectors but also serve as hosts for the vectors themselves, supporting their populations. Their public health significance in developing countries is of growing importance as a result of zoonotic and enzootic diseases associated with the pathogens they transmit. Therefore, a study was carried out to determine the prevalence of ectoparasites of wild game in Nsukka, southeast Nigeria. Physical examinations were carried out on 143 wildlife, and laboratory identification was employed on the ectoparasites. The collected ectoparasites were identified in the laboratory using literature and with the help of a taxonomist. Results Out of the 143 game examined, 114 was infected with at least one parasite representing about 98.6% of an infestation. Among the parasites identified, Amblyomma spp. showed the highest prevalence of 24.5% at 95% confidential intervals of CI (1.45–3.19)–24.5% (p ≤ 0.05). No difference was observed in the prevalence of the ectoparasites according to sex, except for Ixodes holocyclus. Similarly, no difference was observed in prevalence with reference to age except for Rhipicephalus spp. and Polyplax spinulosa which showed differences. Conclusions The present study provides basic data about the most prevalent ectoparasitic arthropod among game in Nsukka, southeast Nigeria, which requires an evaluation of its zoonotic control measures. This work can elicit the risk of possible transmission of some zoonotic and enzootic diseases via game. Improving awareness among local people and bushmeat dealers about the risk of contracting a vector-borne disease through wildlife is crucial.


Sign in / Sign up

Export Citation Format

Share Document