scholarly journals Segmentation pathway genes in the Asian citrus psyllid, Diaphorina citri

2020 ◽  
Author(s):  
Sherry Miller ◽  
Teresa D. Shippy ◽  
Prashant S Hosmani ◽  
Mirella Flores-Gonzalez ◽  
Lukas A Mueller ◽  
...  

AbstractInsects have a segmented body plan that is established during embryogenesis when the anterior-posterior (A-P) axis is divided into repeated units by a cascade of gene expression. The cascade is initiated by protein gradients created by translation of maternally provided mRNAs, localized at the anterior and posterior poles of the embryo. Particular combinations of these proteins activate specific gap genes to divide the embryo into distinct regions along the A-P axis. Gap genes then activate pair-rule genes, which are usually expressed in part of every other segment. The pair-rule genes, in turn, activate expression of segment polarity genes in a portion of each segment. The segmentation genes are generally conserved among insects, although there is considerable variation in how they are deployed. We annotated 24 segmentation gene homologs in the Asian citrus psyllid, Diaphorina citri. We identified most of the genes that were expected to be present based on known phylogenetic distribution. Two exceptions were eagle and invected, which are present in at least some hemipterans, but were not identified in D. citri. Many of these genes are likely to be essential for D. citri development and thus may be useful targets for pest control methods.

Gigabyte ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sherry Miller ◽  
Teresa D. Shippy ◽  
Prashant S. Hosmani ◽  
Mirella Flores-Gonzalez ◽  
Lukas A. Mueller ◽  
...  

Insects have a segmented body plan that is established during embryogenesis when the anterior–posterior (A–P) axis is divided into repeated units by a cascade of gene expression. The cascade is initiated by protein gradients created by translation of maternally provided mRNAs, localized at the anterior and posterior poles of the embryo. Combinations of these proteins activate specific gap genes to divide the embryo into distinct regions along the anterior–posterior axis. Gap genes then activate pair-rule genes, which are usually expressed in parts of every other segment. The pair-rule genes, in turn, activate expression of segment polarity genes in a portion of each segment. The segmentation genes are generally conserved among insects, although there is considerable variation in how they are deployed. We annotated 25 segmentation gene homologs in the Asian citrus psyllid, Diaphorina citri. Most of the genes expected to be present in D. citri based on their phylogenetic distribution in other insects were identified and annotated. Two exceptions were eagle and invected, which are present in at least some hemipterans, but were not found in D. citri. Many of the segmentation pathway genes are likely to be essential for D. citri development, and thus they may be useful targets for gene-based pest control methods.


Development ◽  
1997 ◽  
Vol 124 (7) ◽  
pp. 1393-1403 ◽  
Author(s):  
R. Namba ◽  
T.M. Pazdera ◽  
R.L. Cerrone ◽  
J.S. Minden

The product of the maternal effect gene, bicoid (bcd), is a transcription factor that acts in a concentration-dependent fashion to direct the establishment of anterior fates in the Drosophila melanogaster embryo. Embryos laid by mothers with fewer or greater than the normal two copies of bcd show initial alterations in the expression of the gap, segmentation and segment polarity genes, as well as changes in early morphological markers. In the absence of a fate map repair system, one would predict that these initial changes would result in drastic changes in the shape and size of larval and adult structures. However, these embryos develop into relatively normal larvae and adults. This indicates that there is plasticity in Drosophila embryonic development along the anterior-posterior axis. Embryos laid by mothers with six copies of bcd have reduced viability, indicating a threshold for repairing anterior-posterior mispatterning. We show that cell death plays a major role in correcting expanded regions of the fate map. There is a concomitant decrease of cell death in compressed regions of the fate map. We also show that compression of the fate map does not appear to be repaired by the induction of new cell divisions. In addition, some tissues are more sensitive to fate map compression than others.


2018 ◽  
Author(s):  
Tzach Auman ◽  
Ariel D. Chipman

AbstractOne of the best studied developmental processes is the Drosophila segmentation cascade. However, this cascade is generally considered to be highly derived and unusual. We present a detailed analysis of the sequential segmentation cascade of the milkweed bug Oncopletus fasciatus, as a comparison to Drosophila, with the aim of reconstructing the evolution of insect segmentation. We analyzed the expression of 12 genes, representing different phases during segmentation. We reconstruct the spatio-temporal relationships among these genes And their roles and position in the cascade. We conclude that sequential segmentation in the Oncopeltus germband includes three phases: Primary pair-rule genes generate segmental gene expression in the anterior growth zone, followed by secondary pair-rule genes, expressed in the transition between the growth zone and the segmented germband. Segment polarity genes are expressed in the segmented germband. This process generates a single-segment periodicity, and does not have a double-segment pattern at any stage.


Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 609-623 ◽  
Author(s):  
T. Gutjahr ◽  
E. Frei ◽  
M. Noll

The paired gene is one of approximately 30 zygotic segmentation genes responsible for establishing the segmented body plan of Drosophila melanogaster. To gain insight into the mechanism by which the paired gene is expressed in a complex temporal and spatial pattern, we have examined paired protein expression in wild-type and mutant embryos. In wild-type embryos, paired protein is expressed in several phases. Initial expression in broad domains evolves into a pair-rule pattern of eight stripes during cellularization. Subsequently, a segment-polarity-like pattern of fourteen stripes emerges. Later, at mid-embryogenesis, paired is expressed in specific regions of the head and in specific cells of the central nervous system. Analysis of the initial paired expression in the primary pair-rule mutants even-skipped, runt and hairy, and in all gap mutants suggests that the products of the gap genes hunchback, Kruppel, knirps and giant activate paired expression in stripes. With the exception of stripe 1, which is activated by even-skipped, and stripe 8, which depends upon runt, the primary pair-rule proteins are required for subsequent modulation rather than activation of the paired stripes. The factors activating paired expression in the pair-rule mode appear to interact with those activating it along the dorsoventral axis.


Development ◽  
1999 ◽  
Vol 126 (19) ◽  
pp. 4385-4394 ◽  
Author(s):  
M. Crozatier ◽  
D. Valle ◽  
L. Dubois ◽  
S. Ibnsouda ◽  
A. Vincent

Whereas the segmental nature of the insect head is well established, relatively little is known about the genetic and molecular mechanisms governing this process. In this paper, we report the phenotypic analysis of mutations in collier (col), which encodes the Drosophila member of the COE family of HLH transcription factors and is activated at the blastoderm stage in a region overlapping a parasegment (PS0: posterior intercalary and anterior mandibular segments) and a mitotic domain, MD2. col mutant embryos specifically lack intercalary ectodermal structures. col activity is required for intercalary-segment expression both of the segment polarity genes hedgehog, engrailed, and wingless, and of the segment identity gene cap and collar. The parasegmental register of col activation is controlled by the combined activities of the head-gap genes buttonhead and empty spiracles and the pair-rule gene even skipped; it therefore integrates inputs from both the head and trunk segmentation systems, which were previously considered as being essentially independent. After gastrulation, positive autoregulation of col is limited to cells of anterior PS0. Conversely, heat-pulse induced ubiquitous expression of Col leads to disruption of the head skeleton. Together, these results indicate that col is required for establishment of the PS(−1)/PS0 parasegmental border and formation of the intercalary segment. Our data support neither a simple combinatorial model for segmental patterning of the head nor a direct activation of segment polarity gene expression by head-gap genes, but rather argue for the existence of parasegment-specific second order regulators acting in the head, at a level similar to that of pair-rule genes in the trunk.


Development ◽  
1988 ◽  
Vol 104 (Supplement) ◽  
pp. 35-50 ◽  
Author(s):  
Ken Howard

The first indication of the formation of segment primordia in Drosophila is expression of the segment-polarity genes in particular parts of each primordium. These patterns are controlled by another class of genes, the pair-rule genes, which show characteristic two-segment periodic expression. Each pair-rule gene has a unique domain of activity and in one view different combinations of pair-rule gene products directly control the expression of the segment-polarity genes. There is a hierarchy within the pair-rule class revealed by pair-rule gene interactions. It is unlikely that these interactions generate the periodicity de novo. Instead, pair-rule genes respond to positional information generated by a system involving zygotic gap and maternal coordinate genes. In this paper, I will concentrate on the problem of the mechanism that generates these pair-rule patterns, the first periodic ones seen during segmentation. I will review and discuss some of the relevant literature, illustrating certain points with data from my recent work.


Development ◽  
1991 ◽  
Vol 113 (2) ◽  
pp. 419-430 ◽  
Author(s):  
R. Sommer ◽  
D. Tautz

Drosophila and Musca both belong to the group of higher dipteran flies and show morphologically a very similar early development. However, these two species are evolutionary separated by at least 100 million years. This presents the opportunity for a comparative analysis of segmentation gene expression across a large evolutionary distance in a very similar embryonic background. We have analysed in detail the early expression of the maternal gene bicoid, the gap genes hunchback, Kruppel, knirps and tailless, the pair-rule gene hairy, the segment-polarity gene engrailed and the homoeotic gene Ultrabithorax. We show that the primary expression domains of these genes are conserved, while some secondary expression aspects have diverged. Most notable is the finding of hunchback expression in 11–13 stripes shortly before gastrulation, as well as a delayed expression of terminal domains of various genes. We conclude that the early developmental gene hierarchy, as it has been defined in Drosophila, is evolutionary conserved in Musca domestica.


Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 283-291 ◽  
Author(s):  
P.W. Ingham ◽  
A. Hidalgo

The segment polarity gene wingless (wg) is expressed in a complex pattern during embryogenesis suggesting that it plays multiple roles in the development of the embryo. The best characterized of these is its role in cell pattening in each parasegment, a process that requires the activity of other segment polarity genes including patched (ptc) and hedgehog (hh). Here we present further evidence that ptc and hh encode components of a signal transduction pathway that regulate the expression of wg transcription following its activation by pair-rule genes. We also show that most other aspects of wg expression are independent of this regulatory network.


Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 3935-3945 ◽  
Author(s):  
K.J. Millen ◽  
C.C. Hui ◽  
A.L. Joyner

To gain insight into the molecular genetic basis of cerebellar patterning, the expression patterns of many vertebrate homologues of Drosophila segment polarity genes were examined during normal and abnormal cerebellar development, including members of the En, Wnt, Pax, Gli and Dvl gene families. Five of these genes were found to show transient, spatially restricted patterns of expression. Strikingly, expression of En-2, En-1, Wnt-7B and Pax-2 defined eleven similar sagittal domains at 17.5 dpc, reminiscent of the transient sagittal domains of expression of Purkinje cell markers which have been implicated in cerebellar afferent patterning. Postnatally, transient anterior/posterior differences in expression were observed for En-2, En-1, Gli and Wnt-7B dividing the cerebellum into anterior and posterior regions. The expression patterns of these genes were altered in cerebella of En-2 homozygous mutant mice, which show a cerebellar foliation patterning defect. Strikingly, four of the Wnt-7B expression domains that are adjacent to the En-2 domains are lost in En-2 mutant embryonic cerebella. These studies provide the first evidence of a potential network of regulatory genes that establish spatial cues in the developing cerebellum by dividing it into a grid of positional information required for patterning foliation and afferents. Taken together with previous gene expression studies, our data suggests that eleven sagittal domains and at least two anterior/posterior compartments are the basic elements of spatial information in the cerebellum.


Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 785-796 ◽  
Author(s):  
A.S. Manoukian ◽  
H.M. Krause

During Drosophila development, an important aspect of body patterning is the division of the embryo into repeating morphological units referred to as parasegments. The parasegmental domains are first defined at the blastoderm stage by alternating stripes of transcripts encoded by the pair-rule genes fushi tarazu (ftz) and even-skipped (eve) and later by stripes encoded by the segment polarity genes engrailed (en) and wingless. Here, we show that the runt gene (run) is required to generate asymmetries within these parasegmental domains. Using a heat-shock-inducible run transgene, we found that ectopic run expression leads to rapid repression of eve stripes and a somewhat delayed expansion of ftz stripes. Unexpectedly, we also found that ectopic run was a rapid and potent repressor of odd-numbered en stripes. Two remarkably different segmental phenotypes were generated as a consequence of these effects. In solving the mechanisms underlying these phenotypes, we discovered that the positioning of en stripes is largely determined by the actions of negative regulators. Our data indicate that run is required to limit the domains of en expression in the odd-numbered parasegments, while the odd-skipped gene is required to limit the domains of en expression in the even-numbered parasegments. Activation of en at the anterior margins of both sets of parasegments requires the repression of run and odd by the product of the eve gene. The spatial restriction of gene expression via negative and double negative pathways such as these is likely to be a common theme during development.


Sign in / Sign up

Export Citation Format

Share Document