diffusible factor
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 3)

H-INDEX

24
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Haiqin Yao ◽  
Delphine Scornet ◽  
Murielle Jam ◽  
Cécile Hervé ◽  
Philippe Potin ◽  
...  

2020 ◽  
Vol 9 (7) ◽  
Author(s):  
Farzaneh Salari ◽  
Fatemeh Zare-Mirakabad ◽  
Mohammad Hossein Alavi ◽  
Léa Girard ◽  
Mahya Ghafari ◽  
...  

The draft genome sequence of Pseudomonas aeruginosa LMG 1272, isolated from mushroom, is reported here. This strain triggers formation of a precipitate (“white line”) when cocultured with Pseudomonas tolaasii. However, LMG 1272 lacks the capacity to produce a cyclic lipopeptide that is typically associated with white line formation, suggesting the involvement of a different diffusible factor.


BIO-PROTOCOL ◽  
2020 ◽  
Vol 10 (18) ◽  
Author(s):  
Haiqin Yao ◽  
Delphine Scornet ◽  
Yacine Badis ◽  
Akira Peters ◽  
Murielle Jam ◽  
...  

2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Zhenhe Su ◽  
Sen Han ◽  
Zheng Qing Fu ◽  
Guoliang Qian ◽  
Fengquan Liu

ABSTRACTLysobacter enzymogenesis a Gram-negative, environmentally ubiquitous bacterium that produces a secondary metabolite, called heat-stable antifungal factor (HSAF), as an antifungal factor against plant and animal fungal pathogens. 4-Hydroxybenzoic acid (4-HBA) is a newly identified diffusible factor that regulates HSAF synthesis viaL. enzymogenesLysR (LysRLe), an LysR-type transcription factor (TF). Here, to identify additional TFs within the 4-HBA regulatory pathway that control HSAF production, we reanalyzed the LenB2-based transcriptomic data, in which LenB2 is the enzyme responsible for 4-HBA production. This survey led to identification of three TFs (Le4806, Le4969, and Le3904). Of them, LarR (Le4806), a member of the MarR family proteins, was identified as a new TF that participated in the 4-HBA-dependent regulation of HSAF production. Our data show the following: (i) that LarR is a downstream component of the 4-HBA regulatory pathway controlling the HSAF level, while LysRLeis the receptor of 4-HBA; (ii) that 4-HBA and LysRLehave opposite regulatory effects onlarRtranscription wherebylarRtranscript is negatively modulated by 4-HBA while LysRLe, in contrast, exerts positive transcriptional regulation by directly binding to thelarRpromoter without being affected by 4-HBAin vitro; (iii) that LarR, similar to LysRLe, can bind to the promoter of the HSAF biosynthetic gene operon, leading to positive regulation of HSAF production; and (iv) that LarR and LysRLecannot interact and instead control HSAF biosynthesis independently. These results outline a previously uncharacterized mechanism by which biosynthesis of the antibiotic HSAF inL. enzymogenesis modulated by the interplay of 4-HBA, a diffusible molecule, and two different TFs.IMPORTANCEBacteria use diverse chemical signaling molecules to regulate a wide range of physiological and cellular processes. 4-HBA is an “old” chemical molecule that is produced by diverse bacterial species, but its regulatory function and working mechanism remain largely unknown. We previously found that 4-HBA inL. enzymogenescould serve as a diffusible factor regulating HSAF synthesis via LysRLe. Here, we further identified LarR, an MarR family protein, as a second TF that participates in the 4-HBA-dependent regulation of HSAF biosynthesis. Our results dissected how LarR acts as a protein linker to connect 4-HBA and HSAF synthesis, whereby LarR also has cross talk with LysRLe. Thus, our findings not only provide fundamental insight regarding how a diffusible molecule (4-HBA) adopts two different types of TFs for coordinating HSAF biosynthesis but also show the use of applied microbiology to increase the yield of the antibiotic HSAF by modification of the 4-HBA regulatory pathway inL. enzymogenes.


2017 ◽  
Vol 23 (3) ◽  
pp. 424-448 ◽  
Author(s):  
Philip Gerlee ◽  
David Basanta ◽  
Alexander R. A. Anderson

The importance of individual cells in a developing multicellular organism is well known, but precisely how the individual cellular characteristics of those cells collectively drive the emergence of robust, homeostatic structures is less well understood. For example, cell communication via a diffusible factor allows for information to travel across large distances within the population, and cell polarization makes it possible to form structures with a particular orientation, but how do these processes interact to produce a more robust and regulated structure? In this study we investigate the ability of cells with different cellular characteristics to grow and maintain homeostatic structures. We do this in the context of an individual-based model where cell behavior is driven by an intracellular network that determines the cell phenotype. More precisely, we investigated evolution with 96 different permutations of our model, where cell motility, cell death, long-range growth factor (LGF), short-range growth factor (SGF), and cell polarization were either present or absent. The results show that LGF has the largest positive influence on the fitness of the evolved solutions. SGF and polarization also contribute, but all other capabilities essentially increase the search space, effectively making it more difficult to achieve a solution. By perturbing the evolved solutions, we found that they are highly robust to both mutations and wounding. In addition, we observed that by evolving solutions in more unstable environments they produce structures that were more robust and adaptive. In conclusion, our results suggest that robust collective behavior is most likely to evolve when cells are endowed with long-range communication, cell polarisation, and selection pressure from an unstable environment.


2013 ◽  
Vol 15 (1) ◽  
pp. 80-93 ◽  
Author(s):  
Maria F. Torres ◽  
Diego F. Cuadros ◽  
Lisa J. Vaillancourt
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Marco Mainardi ◽  
Tommaso Pizzorusso ◽  
Margherita Maffei

Regulation of feeding behavior has been a crucial step in the interplay between leptin and the arcuate nucleus of the hypothalamus (ARC). On one hand, the basic mechanisms regulating central and peripheral action of leptin are becoming increasingly clear. On the other hand, knowledge on how brain sensitivity to leptin can be modulated is only beginning to accumulate. This point is of paramount importance if one considers that pathologically obese subjects have high levels of plasmatic leptin. A possible strategy for exploring neural plasticity in the ARC is to act on environmental stimuli. This can be achieved with various protocols, namely, physical exercise, high-fat diet, caloric restriction, and environmental enrichment. Use of these protocols can, in turn, be exploited to isolate key molecules with translational potential. In the present review, we summarize present knowledge about the mechanisms of plasticity induced by the environment in the ARC. In addition, we also address the role of leptin in extrahypothalamic plasticity, in order to propose an integrated view of how a single diffusible factor can regulate diverse brain functions.


2012 ◽  
Vol 87 (1) ◽  
pp. 80-93 ◽  
Author(s):  
Lian Zhou ◽  
Jia-Yuan Wang ◽  
Jianhe Wang ◽  
Alan Poplawsky ◽  
Shuangjun Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document