molecular transition
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 25)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 96 (12) ◽  
pp. 125866
Author(s):  
Anil Kumar Soni ◽  
Pushpa Giri ◽  
Gaurav Varshney

Abstract A technique is implemented for obtaining the high absorption over super-wideband (SWB) in a metal-free THz absorber. The multiple resonant modes with wide spectra are generated in a graphite-based resonator placed on a dielectric cavity merging of which provides the SWB response. The low permittivity dielectric slab sandwiched between the graphite sheet at its bottom and graphite resonator at its top acts as the Fabry–Perot cavity where absorption takes place. The high absorption rate of graphite in the THz regime can make it a suitable candidate for its utilization in implementing the broadband absorber. Thus, the molecular transition due to interaction of energy in graphite also provides the high absorption. The absorption bandwidth can further be enhanced by stacking of multiple layers in two different configurations of the proposed unit cell. The absorber maintains the polarization insensitivity due to symmetry and allows the high absorption for the electromagnetic wave incident up to the angle of more than 75 ° . The proposed absorber can be utilized in the THz electromagnetic shielding applications due to its SWB response.


2021 ◽  
Author(s):  
Ronny Neumann ◽  
Dima Azaiza-Dabbah ◽  
Charlotte Vogt ◽  
Fei Wang ◽  
Albert Masip-Sánchez ◽  
...  

2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Yusef Shari'ati ◽  
Josh Vura-Weis

Polystyrene and polyvinyl chloride thin films are explored as sample supports for extreme ultraviolet (XUV) spectroscopy of molecular transition metal complexes. Thin polymer films prepared by slip-coating are flat and smooth, and transmit much more XUV light than silicon nitride windows. Analytes can be directly cast onto the polymer surface or co-deposited within it. The M-edge XANES spectra (40–90 eV) of eight archetypal transition metal complexes (M = Mn, Fe, Co, Ni) are presented to demonstrate the versatility of this method. The films are suitable for pump/probe transient absorption spectroscopy, as shown by the excited-state spectra of Fe(bpy)3 2+ in two different polymer supports.


2021 ◽  
Author(s):  
Zachary Reed ◽  
Joseph Hodges ◽  
David Long ◽  
Brian Drouin
Keyword(s):  

Author(s):  
Yonggang Zhou ◽  
Idrice Carther Kue Foka ◽  
Haiyan Li

Inositol transporter (INT) is reputed as the pivotal transporter for vital metabolites like lipids, minerals, and sugars particularly. These transporters play important role in transitional metabolism and various signaling pathways in plants through regulating the transduction of messages from hormones, neurotransmitters, and immunologic and growth factors. Extensive studies have been conducted on animal INT with promising outcomes. However, few recent studies have highlighted the importance and the complexity of INT genes in the regulation of plant physiology stages including growth and tolerance to stress conditions. The present review sum-up the most recent findings on the role of INT or inositol genes in plant metabolisms and the responsive mechanisms that cope with external stressors. Moreover, we highlighted the emerging role of vacuoles and vacuolar inositol transporters in plant molecular transition and their related roles in plant growth and development. Inositol transporters are the essential mediator for the inositol uptake and its intracellular broadcasting for various metabolic pathways where they play crucial roles. Also, so far characterized only in animals, we reported evidence on Na+/inositol transporters H+/inositol symporters and suggested their roles and operating mode in plants. Thus, understanding the INT functioning system, the coordinated movement of inositol, and the relation between inositol generation and other important plant signaling pathways would be an excellent asset for advancement in researches on plant stress adaptation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
P. J. M. Swinkels ◽  
S. G. Stuij ◽  
Z. Gong ◽  
H. Jonas ◽  
N. Ruffino ◽  
...  

AbstractColloids have a rich history of being used as ‘big atoms’ mimicking real atoms to study crystallization, gelation and the glass transition of condensed matter. Emulating the dynamics of molecules, however, has remained elusive. Recent advances in colloid chemistry allow patchy particles to be synthesized with accurate control over shape, functionality and coordination number. Here, we show that colloidal alkanes, specifically colloidal cyclopentane, assembled from tetrameric patchy particles by critical Casimir forces undergo the same chemical transformations as their atomic counterparts, allowing their dynamics to be studied in real time. We directly observe transitions between chair and twist conformations in colloidal cyclopentane, and we elucidate the interplay of bond bending strain and entropy in the molecular transition states and ring-opening reactions. These results open the door to investigate complex molecular kinetics and molecular reactions in the high-temperature classical limit, in which the colloidal analogue becomes a good model.


Sign in / Sign up

Export Citation Format

Share Document