scholarly journals Numerical Investigation of Chemical Schnakenberg Mathematical Model

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Faiz Muhammad Khan ◽  
Amjad Ali ◽  
Nawaf Hamadneh ◽  
Abdullah ◽  
Md Nur Alam

Schnakenberg model is known as one of the influential model used in several biological processes. The proposed model is an autocatalytic reaction in nature that arises in various biological models. In such kind of reactions, the rate of reaction speeds up as the reaction proceeds. It is because when a product itself acts as a catalyst. In fact, model endows fractional derivatives that got great advancement in the investigation of mathematical modeling with memory effect. Therefore, in the present paper, the authors develop a scheme for the solution of fractional order Schnakenberg model. The proposed model describes an auto chemical reaction with possible oscillatory behavior which may have several applications in biological and biochemical processes. In this work, the authors generalized the concept of integer order Schnakenberg model to fractional order Schnakenberg model. We provided the approximate solution for the underlying generalized nonlinear Schnakenberg model in the sense of Caputo differential operator via Laplace Adomian decomposition method (LADM). Furthermore, we established the general scheme for the considered model in the form of infinite series by the aforementioned technique. The consequent results obtained by the proposed technique ensure that LADM is an effective and accurate techniques to handle nonlinear partial differential equations as compared to the other available numerical techniques. Finally, the obtained numerical solution is visualized graphically by MATLAB to describe the dynamics of desired solution.

2021 ◽  
Vol 13 (2) ◽  
pp. 101
Author(s):  
Abdoul wassiha NEBIE ◽  
Frederic BERE ◽  
Bakari ABBO ◽  
Youssouf PARE

In this paper, we propose the solution of some nonlinear partial differential equations of  fractional order that modeled diffusion, convection and reaction problems. For the solution of these equations we will use the SBA method which is a method based on the combination of the Adomian Decomposition Method (ADM), the Picard's principle  and the method of successive approximations.   


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Bijan Hasani Lichae ◽  
Jafar Biazar ◽  
Zainab Ayati

In this paper, the fractional-order differential model of HIV-1 infection of CD4+T-cells with the effect of drug therapy has been introduced. There are three components: uninfected CD4+T-cells,x, infected CD4+T-cells,y, and density of virions in plasma,z. The aim is to gain numerical solution of this fractional-order HIV-1 model by Laplace Adomian decomposition method (LADM). The solution of the proposed model has been achieved in a series form. Moreover, to illustrate the ability and efficiency of the proposed approach, the solution will be compared with the solutions of some other numerical methods. The Caputo sense has been used for fractional derivatives.


2022 ◽  
Vol 7 (2) ◽  
pp. 2878-2890
Author(s):  
Amjad Ali ◽  
◽  
Iyad Suwan ◽  
Thabet Abdeljawad ◽  
Abdullah ◽  
...  

<abstract><p>In the present work, the authors developed the scheme for time Fractional Partial Diffusion Differential Equation (FPDDE). The considered class of FPDDE describes the flow of fluid from the higher density region to the region of lower density, macroscopically it is associated with the gradient of concentration. FPDDE is used in different branches of science for the modeling and better description of those processes that involve flow of substances. The authors introduced the novel concept of fractional derivatives in term of both time and space independent variables in the proposed FPDDE. We provided the approximate solution for the underlying generalized non-linear time PFDDE in the sense of Caputo differential operator via Laplace transform combined with Adomian decomposition method known as Laplace Adomian Decomposition Method (LADM). Furthermore, we established the general scheme for the considered model in the form of infinite series by aforementioned techniques. The consequent results obtained by the proposed technique ensure that LADM is an effective and accurate technique to handle nonlinear partial differential equations as compared to the other available numerical techniques. At the end of this paper, the obtained numerical solution is visualized graphically by Matlab to describe the dynamics of desired solution.</p></abstract>


2020 ◽  
Vol 23 (6) ◽  
pp. 1783-1796
Author(s):  
Neelam Singha

Abstract In this article, we aim to analyze a mathematical model of tumor growth as a problem of fractional optimal control. The considered fractional-order model describes the interaction of effector-immune cells and tumor cells, including combined chemo-immunotherapy. We deduce the necessary optimality conditions together with implementing the Adomian decomposition method on the suggested fractional-order optimal control problem. The key motive is to perform numerical simulations that shall facilitate us in understanding the behavior of state and control variables. Further, the graphical interpretation of solutions effectively validates the applicability of the present analysis to investigate the growth of cancer cells in the presence of medical treatment.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 426 ◽  
Author(s):  
Hassan Khan ◽  
Rasool Shah ◽  
Poom Kumam ◽  
Dumitru Baleanu ◽  
Muhammad Arif

In the present article, fractional-order telegraph equations are solved by using the Laplace-Adomian decomposition method. The Caputo operator is used to define the fractional derivative. Series form solutions are obtained for fractional-order telegraph equations by using the proposed method. Some numerical examples are presented to understand the procedure of the Laplace-Adomian decomposition method. As the Laplace-Adomian decomposition procedure has shown the least volume of calculations and high rate of convergence compared to other analytical techniques, the Laplace-Adomian decomposition method is considered to be one of the best analytical techniques for solving fractional-order, non-linear partial differential equations—particularly the fractional-order telegraph equation.


2018 ◽  
Vol 1 (2) ◽  
pp. 9-31
Author(s):  
Attaullah

In this paper, Laplace Adomian decomposition method (LADM) is applied to solve linear and nonlinear partial differential equations (PDEs). With the help of proposed method, we handle the approximated analytical solutions to some interesting classes of PDEs including nonlinear evolution equations, Cauchy reaction-diffusion equations and the Klien-Gordon equations.


2019 ◽  
Vol 33 (06) ◽  
pp. 1950031 ◽  
Author(s):  
Dong Peng ◽  
Ke Hui Sun ◽  
Abdulaziz. O. A. Alamodi

In this paper, dynamics of the fractional-order permanent magnet synchronous motor (FOPMSM) model is investigated. The numerical solution of the FOPMSM system is derived based on Adomian decomposition method (ADM) that is a computationally efficient and high accurate method, and its dynamical behaviors are observed by means of phase diagrams, bifurcation diagrams, Lyapunov exponent spectra (LEs), Poincaré section and chaos diagram based on spectral entropy (SE) complexity. Comparison with some reported studies, the simulation results show that it has more rich dynamical characteristics. The lowest order for the existence of chaos is 2.115 that demonstrated by 0–1 test, which is lower than that existing result (2.85). Finally, the FOPMSM system is implemented by digital signal processor (DSP), which verifies the correctness of the solution algorithm and the physical feasibility of this system. It indicates that the FOPMSM system has broad application prospect.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Shu-ying Wang ◽  
Jian-feng Zhao ◽  
Xiao-yan Wang ◽  
Li-tao Zhang

Based on the Adomian decomposition method and Lyapunov stability theory, this paper constructs a fractional-order memristive hyperchaos. Then, the 0–1 test analysis is applied to detect random nature of chaotic sequences exhibited by the fractional-order systems. Comparing with the corresponding integer-order hyperchaotic system, the fractional-order hyperchaos possesses higher complexity. Finally, an image encryption algorithm is proposed based on the fractional-order memristive hyperchaos. Security and performance analysis indicates that the proposed chaos-based image encryption algorithm is highly resistant to statistical attacks.


Author(s):  
Ghaus ur Rahman ◽  
Ahmet Yildirim ◽  
Fazal Haq ◽  
Emile F. Doungmo Goufo

Influenza A-virus infection represents a global threat causing seasonal outbreaks and pandemics. Among the global threats creating seasonal outbreak, Influenza “A-virus” infection is a dominating theme nowadays. Using the theory of fractional calculus, this study considers an influenza model for quantitative study via the Laplace Adomian Decomposition Method (LADM). We proceed to explore the role of LADM on the proposed model. The method is described and explained for the proposed model while providing some plots to present the behavior of the disease.


Sign in / Sign up

Export Citation Format

Share Document