scholarly journals A New Framework of Evolutionary Multi-Objective Algorithms with an Unbounded External Archive

Author(s):  
Hisao Ishibuchi ◽  
Lie Meng Pang ◽  
Ke Shang

This paper proposes a new framework for the design of evolutionary multi-objective optimization (EMO) algorithms. The main characteristic feature of the proposed framework is that the optimization result of an EMO algorithm is not the final population but a subset of the examined solutions during its execution. As a post-processing procedure, a pre-specified number of solutions are selected from an unbounded external archive where all the examined solutions are stored. In the proposed framework, the final population does not have to be a good solution set. The point of the algorithm design is to examine a wide variety of solutions over the entire Pareto front and to select well-distributed solutions from the archive. In this paper, first we explain difficulties in the design of EMO algorithms in the existing two frameworks: non-elitist and elitist. Next, we propose the new framework of EMO algorithms. Then we demonstrate advantages of the proposed framework over the existing ones through computational experiments. Finally we suggest some interesting and promising future research topics.

2020 ◽  
Author(s):  
Hisao Ishibuchi ◽  
Lie Meng Pang ◽  
Ke Shang

This paper proposes a new framework for the design of evolutionary multi-objective optimization (EMO) algorithms. The main characteristic feature of the proposed framework is that the optimization result of an EMO algorithm is not the final population but a subset of the examined solutions during its execution. As a post-processing procedure, a pre-specified number of solutions are selected from an unbounded external archive where all the examined solutions are stored. In the proposed framework, the final population does not have to be a good solution set. The point of the algorithm design is to examine a wide variety of solutions over the entire Pareto front and to select well-distributed solutions from the archive. In this paper, first we explain difficulties in the design of EMO algorithms in the existing two frameworks: non-elitist and elitist. Next, we propose the new framework of EMO algorithms. Then we demonstrate advantages of the proposed framework over the existing ones through computational experiments. Finally we suggest some interesting and promising future research topics.


2011 ◽  
Vol 1 ◽  
pp. 9-15
Author(s):  
Yue Lin Gao ◽  
Fan Fan Lei

A multi-objective particle swarm optimization with dynamic crowding entropy-based diversity measure is proposed in this paper. Firstly, the elitist strategy is used in external archive in order to improve the convergence of this algorithm. Then the new diversity strategy called dynamic crowding entropy strategy and the global optimization update strategy are used to ensure sufficient diversity and uniform distribution amongst the solution of the non-dominated fronts. The results show that the proposed algorithm is able to find better spread of solutions with the better convergence to the Pareto front and preserve diversity of Pareto optimal solutions the more efficiently.


2018 ◽  
Vol 26 (3) ◽  
pp. 411-440 ◽  
Author(s):  
Hisao Ishibuchi ◽  
Ryo Imada ◽  
Yu Setoguchi ◽  
Yusuke Nojima

The hypervolume indicator has frequently been used for comparing evolutionary multi-objective optimization (EMO) algorithms. A reference point is needed for hypervolume calculation. However, its specification has not been discussed in detail from a viewpoint of fair performance comparison. A slightly worse point than the nadir point is usually used for hypervolume calculation in the EMO community. In this paper, we propose a reference point specification method for fair performance comparison of EMO algorithms. First, we discuss the relation between the reference point specification and the optimal distribution of solutions for hypervolume maximization. It is demonstrated that the optimal distribution of solutions strongly depends on the location of the reference point when a multi-objective problem has an inverted triangular Pareto front. Next, we propose a reference point specification method based on theoretical discussions on the optimal distribution of solutions. The basic idea is to specify the reference point so that a set of well-distributed solutions over the entire linear Pareto front has a large hypervolume and all solutions in such a solution set have similar hypervolume contributions. Then, we examine whether the proposed method can appropriately specify the reference point through computational experiments on various test problems. Finally, we examine the usefulness of the proposed method in a hypervolume-based EMO algorithm. Our discussions and experimental results clearly show that a slightly worse point than the nadir point is not always appropriate for performance comparison of EMO algorithms.


2013 ◽  
Vol 307 ◽  
pp. 161-165
Author(s):  
Hai Jin ◽  
Jin Fa Xie

A multi-objective genetic algorithm is applied into the layout optimization of tracked self-moving power. The layout optimization mathematical model was set up. Then introduced the basic principles of NSGA-Ⅱ, which is a Pareto multi-objective optimization algorithm. Finally, NSGA-Ⅱwas presented to solve the layout problem. The algorithm was proved to be effective by some practical examples. The results showed that the algorithm can spread toward the whole Pareto front, and provide many reasonable solutions once for all.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2426 ◽  
Author(s):  
Bo Yu ◽  
Shuai Wu ◽  
Zongxia Jiao ◽  
Yaoxing Shang

During the last few years, the concept of more-electric aircraft has been pushed ahead by industry and academics. For a more-electric actuation system, the electrohydrostatic actuator (EHA) has shown its potential for better reliability, low maintenance cost and reducing aircraft weight. Designing an EHA for aviation applications is a hard task, which should balance several inconsistent objectives simultaneously, such as weight, stiffness and power consumption. This work presents a method to obtain the optimal EHA, which combines multi-objective optimization with a synthetic decision method, that is, a multi-objective optimization design method, that can combine designers’ preferences and experiences. The evaluation model of an EHA in terms of weight, stiffness and power consumption is studied in the first section. Then, a multi-objective particle swarm optimization (MOPSO) algorithm is introduced to obtain the Pareto front, and an analytic hierarchy process (AHP) is applied to help find the optimal design in the Pareto front. A demo of an EHA design illustrates the feasibility of the proposed method.


Author(s):  
Zhenkun Wang ◽  
Qingyan Li ◽  
Qite Yang ◽  
Hisao Ishibuchi

AbstractIt has been acknowledged that dominance-resistant solutions (DRSs) extensively exist in the feasible region of multi-objective optimization problems. Recent studies show that DRSs can cause serious performance degradation of many multi-objective evolutionary algorithms (MOEAs). Thereafter, various strategies (e.g., the $$\epsilon $$ ϵ -dominance and the modified objective calculation) to eliminate DRSs have been proposed. However, these strategies may in turn cause algorithm inefficiency in other aspects. We argue that these coping strategies prevent the algorithm from obtaining some boundary solutions of an extremely convex Pareto front (ECPF). That is, there is a dilemma between eliminating DRSs and preserving boundary solutions of the ECPF. To illustrate such a dilemma, we propose a new multi-objective optimization test problem with the ECPF as well as DRSs. Using this test problem, we investigate the performance of six representative MOEAs in terms of boundary solutions preservation and DRS elimination. The results reveal that it is quite challenging to distinguish between DRSs and boundary solutions of the ECPF.


Author(s):  
L. Mandow ◽  
J. L. Perez-de-la-Cruz ◽  
N. Pozas

AbstractThis paper addresses the problem of approximating the set of all solutions for Multi-objective Markov Decision Processes. We show that in the vast majority of interesting cases, the number of solutions is exponential or even infinite. In order to overcome this difficulty we propose to approximate the set of all solutions by means of a limited precision approach based on White’s multi-objective value-iteration dynamic programming algorithm. We prove that the number of calculated solutions is tractable and show experimentally that the solutions obtained are a good approximation of the true Pareto front.


2020 ◽  
pp. 105-113
Author(s):  
M. Farsi

The main aim of this research is to present an optimization procedure based on the integration of operability framework and multi-objective optimization concepts to find the single optimal solution of processes. In this regard, the Desired Pareto Index is defined as the ratio of desired Pareto front to the Pareto optimal front as a quantitative criterion to analyze the performance of chemical processes. The Desired Pareto Front is defined as a part of the Pareto front that all outputs are improved compared to the conventional operating condition. To prove the efficiency of proposed optimization method, the operating conditions of ethane cracking process is optimized as a base case. The ethylene and methane production rates are selected as the objectives in the formulated multi-objective optimization problem. Based on the simulation results, applying the obtained operating conditions by the proposed optimization procedure on the ethane cracking process improve ethylene production by about 3% compared to the conventional condition.  


Author(s):  
Weijun Wang ◽  
Stéphane Caro ◽  
Fouad Bennis ◽  
Oscar Brito Augusto

For Multi-Objective Robust Optimization Problem (MOROP), it is important to obtain design solutions that are both optimal and robust. To find these solutions, usually, the designer need to set a threshold of the variation of Performance Functions (PFs) before optimization, or add the effects of uncertainties on the original PFs to generate a new Pareto robust front. In this paper, we divide a MOROP into two Multi-Objective Optimization Problems (MOOPs). One is the original MOOP, another one is that we take the Robustness Functions (RFs), robust counterparts of the original PFs, as optimization objectives. After solving these two MOOPs separately, two sets of solutions come out, namely the Pareto Performance Solutions (PP) and the Pareto Robustness Solutions (PR). Make a further development on these two sets, we can get two types of solutions, namely the Pareto Robustness Solutions among the Pareto Performance Solutions (PR(PP)), and the Pareto Performance Solutions among the Pareto Robustness Solutions (PP(PR)). Further more, the intersection of PR(PP) and PP(PR) can represent the intersection of PR and PP well. Then the designer can choose good solutions by comparing the results of PR(PP) and PP(PR). Thanks to this method, we can find out the optimal and robust solutions without setting the threshold of the variation of PFs nor losing the initial Pareto front. Finally, an illustrative example highlights the contributions of the paper.


Sign in / Sign up

Export Citation Format

Share Document