caste evolution
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

EvoDevo ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alice Laciny

AbstractAs social insects, ants represent extremely interaction-rich biological systems shaped by tightly integrated social structures and constant mutual exchange with a multitude of internal and external environmental factors. Due to this high level of ecological interconnection, ant colonies can harbour a diverse array of parasites and pathogens, many of which are known to interfere with the delicate processes of ontogeny and caste differentiation and induce phenotypic changes in their hosts. Despite their often striking nature, parasite-induced changes to host development and morphology have hitherto been largely overlooked in the context of ecological evolutionary developmental biology (EcoEvoDevo). Parasitogenic morphologies in ants can, however, serve as “natural experiments” that may shed light on mechanisms and pathways relevant to host development, plasticity or robustness under environmental perturbations, colony-level effects and caste evolution. By assessing case studies of parasites causing morphological changes in their ant hosts, from the eighteenth century to current research, this review article presents a first overview of relevant host and parasite taxa. Hypotheses about the underlying developmental and evolutionary mechanisms, and open questions for further research are discussed. This will contribute towards highlighting the importance of parasites of social insects for both biological theory and empirical research and facilitate future interdisciplinary work at the interface of myrmecology, parasitology, and the EcoEvoDevo framework.


2020 ◽  
Vol 117 (12) ◽  
pp. 6608-6615 ◽  
Author(s):  
Scott Powell ◽  
Shauna L. Price ◽  
Daniel J. C. Kronauer

The scope of adaptive phenotypic change within a lineage is shaped by how functional traits evolve. Castes are defining functional traits of adaptive phenotypic change in complex insect societies, and caste evolution is expected to be phylogenetically conserved and developmentally constrained at broad phylogenetic scales. Yet how castes evolve at the species level has remained largely unaddressed. Turtle ant soldiers (genusCephalotes), an iconic example of caste specialization, defend nest entrances by using their elaborately armored heads as living barricades. Across species, soldier morphotype determines entrance specialization and defensive strategy, while head size sets the specific size of defended entrances. Our species-level comparative analyses of morphotype and head size evolution reveal that these key ecomorphological traits are extensively reversible, repeatable, and decoupled within soldiers and between soldier and queen castes. Repeated evolutionary gains and losses of the four morphotypes were reconstructed consistently across multiple analyses. In addition, morphotype did not predict mean head size across the three most common morphotypes, and head size distributions overlapped broadly across all morphotypes. Concordantly, multiple model-fitting approaches suggested that soldier head size evolution is best explained by a process of divergent pulses of change. Finally, while soldier and queen head size were broadly coupled across species, the level of head size disparity between castes was decoupled from both queen head size and soldier morphotype. These findings demonstrate that caste evolution can be highly dynamic at the species level, reshaping our understanding of adaptive morphological change in complex social lineages.


Evolution ◽  
2020 ◽  
Vol 74 (3) ◽  
pp. 655-659
Author(s):  
Blaine J. Cole

2016 ◽  
Vol 120 ◽  
pp. 67-76 ◽  
Author(s):  
Sylvain Londe ◽  
Mathieu Molet ◽  
Brian L. Fisher ◽  
Thibaud Monnin

2016 ◽  
Vol 29 (11) ◽  
pp. 2111-2128 ◽  
Author(s):  
R. Planqué ◽  
S. Powell ◽  
N. R. Franks ◽  
J. B. van den Berg

2014 ◽  
Author(s):  
Svjetlana Vojvodic ◽  
Brian R Johnson ◽  
Brock Harpur ◽  
Clement Kent ◽  
Amro Zayed ◽  
...  

Social evolution theory posits the existence of genes expressed in one individual that affect the traits and fitness of social partners. The archetypal example of reproductive altruism, honey bee reproductive caste, involves strict social regulation of larval caste fate by care-giving nurses. However, the contribution of nurse-expressed genes, which are prime socially-acting candidate genes, to the caste developmental program and to caste evolution remains mostly unknown. We experimentally induced new queen production by removing the current colony queen, and we used RNA sequencing to study the gene expression profiles of both developing larvae and their care-giving nurses before and after queen removal. By comparing the gene expression profiles between both queen-destined larvae and their nurses to worker-destined larvae and their nurses in queen-present and queen-absent conditions, we identified larval and nurse genes associated with larval caste development and with queen presence. Of 950 differentially-expressed genes associated with larval caste development, 82% were expressed in larvae and 18% were expressed in nurses. Behavioral and physiological evidence suggests that nurses may specialize in the short term feeding queen- versus worker-destined larvae. Estimated selection coefficients indicated that both nurse and larval genes associated with caste are rapidly evolving, especially those genes associated with worker development. Of the 1863 differentially-expressed genes associated with queen presence, 90% were expressed in nurses. Altogether, our results suggest that socially-acting genes play important roles in both the expression and evolution of socially-influenced traits like caste.


2013 ◽  
Vol 9 (6) ◽  
pp. 20130309 ◽  
Author(s):  
David W. Hall ◽  
Soojin V. Yi ◽  
Michael A. D. Goodisman

Kin selection is a fundamentally important process that affects the evolution of social behaviours. The genomics revolution now provides the opportunity to test kin selection theory using genomic data. In this commentary, we discuss previous studies that explored the link between kin selection and patterns of variation within the genome. We then present a new theory aimed at understanding the evolution of genes involved in the development of social insects. Specifically, we investigate caste-antagonistic pleiotropy, which occurs when the phenotypes of distinct castes are optimized by different genotypes at a single locus. We find that caste-antagonistic pleiotropy leads to narrow regions where polymorphism can be maintained. Furthermore, multiple mating by queens reduces the region in which worker-favoured alleles fix, which suggests that multiple mating impedes worker caste evolution. We conclude by discussing ways to test these and other facets of kin selection using newly emerging genomic data.


2011 ◽  
Vol 279 (1732) ◽  
pp. 1437-1446 ◽  
Author(s):  
Karen M. Kapheim ◽  
Adam R. Smith ◽  
Kate E. Ihle ◽  
Gro V. Amdam ◽  
Peter Nonacs ◽  
...  

Social castes of eusocial insects may have arisen through an evolutionary modification of an ancestral reproductive ground plan, such that some adults emerge from development physiologically primed to specialize on reproduction (queens) and others on maternal care expressed as allo-maternal behaviour (workers). This hypothesis predicts that variation in reproductive physiology should emerge from ontogeny and underlie division of labour. To test these predictions, we identified physiological links to division of labour in a facultatively eusocial sweat bee, Megalopta genalis . Queens are larger, have larger ovaries and have higher vitellogenin titres than workers. We then compared queens and workers with their solitary counterparts—solitary reproductive females and dispersing nest foundresses—to investigate physiological variation as a factor in caste evolution. Within dyads, body size and ovary development were the best predictors of behavioural class. Queens and dispersers are larger, with larger ovaries than their solitary counterparts. Finally, we raised bees in social isolation to investigate the influence of ontogeny on physiological variation. Body size and ovary development among isolated females were highly variable, and linked to differences in vitellogenin titres. As these are key physiological predictors of social caste, our results provide evidence for developmental caste-biasing in a facultatively eusocial bee.


Sign in / Sign up

Export Citation Format

Share Document