gene recruitment
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 1)

H-INDEX

15
(FIVE YEARS 0)

Author(s):  
Vincent Dunon ◽  
Peter N. Holmsgaard ◽  
Simone Dealtry ◽  
Rob Lavigne ◽  
Søren Sørensen ◽  
...  

Promiscuous plasmids like IncP-1 plasmids play an important role in the bacterial adaptation to pollution by acquiring and distributing xenobiotic catabolic genes. However, most information comes from isolates and the role of plasmids in governing community-wide bacterial adaptation to xenobiotics and other adaptive forces is not fully understood. Current information on the contribution of IncP-1 plasmids in community adaptation is limited because methods are lacking that directly isolate and identify the plasmid borne adaptive functions in whole-community DNA. In this study, we optimized long range PCR to directly access and identify the cargo carried by IncP-1 plasmids in environmental DNA. The DNA between the IncP-1 backbone genes trbP and traC , a main insertion site of adaptive trait determinants, is amplified and its content analysed by high-throughput sequencing. The method was applied to DNA of an on-farm biopurification system (BPS), treating pesticide contaminated wastewater, to examine whether horizontal gene exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. The cargo recovered from BPS community DNA, encoded catabolic but also resistance traits and various other (un)known functions. Unexpectedly, catabolic traits composed only a minor fraction of the cargo, indicating that the IncP-1 region between trbP and traC is not a major contributor to catabolic adaptation of the BPS microbiome. Instead, it contains a functionally diverse set of genes which either may assist biodegradation functions, be remnants of random gene recruitment, or confer other crucial functions for proliferation in the BPS environment. IMPORTANCE This study presents a long range PCR for direct and cultivation-independent access to the identity of the cargo of a major insertion hot spot of adaptive genes in IncP-1 plasmids and hence a new mobilome tool for understanding the role of IncP-1 plasmids in complex communities. The method was applied to DNA of an on-farm biopurification system (BPS) treating pesticide-contaminated wastewater, aiming at new insights on whether horizontal exchange of catabolic functions by IncP-1 plasmids is a main driver of community adaptation in BPS. Unexpectedly, catabolic functions represented a small fraction of the cargo genes while multiple other gene functions were recovered. These results show that the cargo of the target insertion hot spot in IncP-1 plasmids in a community, not necessarily relates to the main selective trait imposed on that community. Instead these functions might contribute to adaptation to unknown selective forces or represent remnants of random gene recruitment.


2018 ◽  
Vol 29 (21) ◽  
pp. 2578-2590
Author(s):  
Anne de Bruyn Kops ◽  
Jordan E. Burke ◽  
Christine Guthrie

Correlation between transcriptional regulation and positioning of genes at the nuclear envelope is well established in eukaryotes, but the mechanisms involved are not well understood. We show that brr6-1, a mutant of the essential yeast envelope transmembrane protein Brr6p, impairs normal positioning and expression of the PAB1 and FUR4- GAL1,10,7 loci. Similarly, expression of a dominant negative nucleoplasmic Brr6 fragment in wild-type cells reproduced many of the brr6-1 effects. Histone chromatin immunoprecipitation (ChIP) experiments showed decreased acetylation at the key histone H4K16 residue in the FUR4-GAL1,10,7 region in brr6-1. Importantly, blocking deacetylation significantly suppressed selected brr6-1 phenotypes. ChIPseq with FLAG-tagged Brr6 fragments showed enrichment at FUR4 and several other genes that showed striking changes in brr6-1 RNAseq data. These associations depended on a Brr6 putative zinc finger domain. Importantly, artificially tethering the GAL1 locus to the envelope suppressed the brr6-1 effects on GAL1 and FUR4 expression and increased H4K16 acetylation between GAL1 and FUR4 in the mutant. Together these results argue that Brr6 interacts with chromatin, helping to maintain normal chromatin architecture and transcriptional regulation of certain loci at the nuclear envelope.


2018 ◽  
Vol 285 (1885) ◽  
pp. 20181373 ◽  
Author(s):  
Yonggang Hu ◽  
Christian Schmitt-Engel ◽  
Jonas Schwirz ◽  
Nadi Stroehlein ◽  
Tobias Richter ◽  
...  

The mechanisms underlying the evolution of morphological novelties have remained enigmatic but co-option of existing gene regulatory networks (GRNs), recruitment of genes and the evolution of orphan genes have all been suggested to contribute. Here, we study a morphological novelty of beetle pupae called gin-trap. By combining the classical candidate gene approach with unbiased screening in the beetle Tribolium castaneum , we find that 70% of the tested components of the wing network were required for gin-trap development. However, many downstream and even upstream components were not included in the co-opted network. Only one gene was recruited from another biological context, but it was essential for the anteroposterior symmetry of the gin-traps, which represents a gin-trap-unique morphological innovation. Our data highlight the importance of co-option and modification of GRNs. The recruitment of single genes may not be frequent in the evolution of morphological novelties, but may be essential for subsequent diversification of the novelties. Finally, after having screened about 28% of annotated genes in the Tribolium genome to identify the genes required for gin-trap development, we found none of them are orphan genes, suggesting that orphan genes may have played only a minor, if any, role in the evolution of gin-traps.


2017 ◽  
Vol 107 (5) ◽  
pp. 504-518 ◽  
Author(s):  
Simona Florea ◽  
Daniel G. Panaccione ◽  
Christopher L. Schardl

Ergot alkaloids are highly diverse in structure, exhibit diverse effects on animals, and are produced by diverse fungi in the phylum Ascomycota, including pathogens and mutualistic symbionts of plants. These mycotoxins are best known from the fungal family Clavicipitaceae and are named for the ergot fungi that, through millennia, have contaminated grains and caused mass poisonings, with effects ranging from dry gangrene to convulsions and death. However, they are also useful sources of pharmaceuticals for a variety of medical purposes. More than a half-century of research has brought us extensive knowledge of ergot-alkaloid biosynthetic pathways from common early steps to several taxon-specific branches. Furthermore, a recent flurry of genome sequencing has revealed the genomic processes underlying ergot-alkaloid diversification. In this review, we discuss the evolution of ergot-alkaloid biosynthesis genes and gene clusters, including roles of gene recruitment, duplication and neofunctionalization, as well as gene loss, in diversifying structures of clavines, lysergic acid amides, and complex ergopeptines. Also reviewed are prospects for manipulating ergot-alkaloid profiles to enhance suitability of endophytes for forage grasses.


2015 ◽  
Vol 197 (9) ◽  
pp. 1690-1699 ◽  
Author(s):  
Eric S. Boyd ◽  
Amaya M. Garcia Costas ◽  
Trinity L. Hamilton ◽  
Florence Mus ◽  
John W. Peters

ABSTRACTMolybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number ofnifgenes. While the observed increase in the number ofnifgenes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2in metabolism, the increase is not correlated with any of the known O2protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles.IMPORTANCEMolybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and later diversified into aerobes. Here we show that the transition of Nif from anaerobic to aerobic metabolism was accompanied by both gene recruitment and gene loss, resulting in a substantial increase in the number ofnifgenes. While the observed increase in the number ofnifgenes is strongly correlated with adaptation to utilize O2in metabolism, the increase is not correlated with any of the known O2protective mechanisms. Rather, gene recruitment was likely a response to more efficiently regulate Nif under oxic conditions that favor protein turnover.


2013 ◽  
Vol 3 (5) ◽  
pp. e27313 ◽  
Author(s):  
Cheong Xin Chan ◽  
Francesca L Baglivi ◽  
Christina E Jenkins ◽  
Debashish Bhattacharya

Gene ◽  
2012 ◽  
Vol 507 (2) ◽  
pp. 112-118 ◽  
Author(s):  
Xiangyun Wu ◽  
Xiaoling Li ◽  
Lu Li ◽  
Xiaodong Xu ◽  
Jianjun Xia ◽  
...  

2011 ◽  
Vol 80 (4) ◽  
pp. 1062-1074 ◽  
Author(s):  
Céline Fabret ◽  
Etienne Dervyn ◽  
Bérengère Dalmais ◽  
Alain Guillot ◽  
Christian Marck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document