yellow warbler
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 1)

Drones ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Andrew M. Wilson ◽  
Kenneth S. Boyle ◽  
Jennifer L. Gilmore ◽  
Cody J. Kiefer ◽  
Matthew F. Walker

Drones are now widely used to study wildlife, but their application in the study of bioacoustics is limited. Drones can be used to collect data on bird vocalizations, but an ongoing concern is that noise from drones could change bird vocalization behavior. To test for behavioral impact, we conducted an experiment using 30 sound localization arrays to track the song output of 7 songbird species before, during, and after a 3 min flight of a small quadcopter drone hovering 48 m above ground level. We analyzed 8303 song bouts, of which 2285, from 184 individual birds were within 50 m of the array centers. We used linear mixed effect models to assess whether patterns in bird song output could be attributed to the drone’s presence. We found no evidence of any effect of the drone on five species: American Robin Turdus migratorius, Common Yellowthroat Geothlypis trichas, Field Sparrow Spizella pusilla, Song Sparrow Melospiza melodia, and Indigo Bunting Passerina cyanea. However, we found a substantial decrease in Yellow Warbler Setophaga petechia song detections during the 3 min drone hover; there was an 81% drop in detections in the third minute (Wald test, p < 0.001) compared with before the drone’s introduction. By contrast, the number of singing Northern Cardinal Cardinalis cardinalis increased when the drone was overhead and remained almost five-fold higher for 4 min after the drone departed (p < 0.001). Further, we found an increase in cardinal contact/alarm calls when the drone was overhead, with the elevated calling rate lasting for 2 min after the drone departed (p < 0.001). Our study suggests that the responses of songbirds to drones may be species-specific, an important consideration when proposing the use of drones in avian studies. We note that recent advances in drone technology have resulted in much quieter drones, which makes us hopeful that the impact that we detected could be greatly reduced.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shelby L. Lawson ◽  
Janice K. Enos ◽  
Sharon A. Gill ◽  
Mark E. Hauber

Referential alarm calls that denote specific types of dangers are common across diverse vertebrate lineages. Different alarm calls can indicate a variety of threats, which often require specific actions to evade. Thus, to benefit from the call, listeners of referential alarm calls must be able to decode the signaled threat and respond to it in an appropriate manner. Yellow warblers (Setophaga petechia) produce referential “seet” calls that signal to conspecifics the presence of nearby obligate brood parasitic brown-headed cowbirds (Molothrus ater), which lay their eggs in the nests of other species, including yellow warblers. Our previous playback experiments have found that red-winged blackbirds (Agelaius phoeniceus), a species also parasitized by brown-headed cowbirds, eavesdrop upon and respond strongly to yellow warbler seet calls during the incubation stage of breeding with aggression similar to responses to both cowbird chatters and predator calls. To assess whether red-winged blackbird responses to seet calls vary with their own risk of brood parasitism, we presented the same playbacks during the nestling stage of breeding (when the risk of brood parasitism is lower than during incubation). As predicted, we found that blackbirds mediated their aggression toward both cowbird chatter calls and the warblers’ anti-parasitic referential alarm calls in parallel with the low current risk of brood parasitism during the nestling stage. These results further support that red-winged blackbirds flexibly respond to yellow warbler antiparasitic referential calls as a frontline defense against brood parasitism at their own nests.


Birds ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 261-274
Author(s):  
Heather L. Bateman ◽  
Sidney B. Riddle ◽  
Erin S. Cubley

Passive acoustic recorders have been used successfully as automated survey tools to detect terrestrial wildlife. However, few studies have monitored Neotropical migratory bird use of riparian forest habitat using this technology. Within dryland ecosystems, the forests along rivers support high bird diversity. Many bird species of conservation concern require these floodplain forest habitats for foraging, migration stop-overs, and breeding. Few studies have explored the use of acoustic records in riverine systems designated for conservation for their natural resource value via the Wild and Scenic Rivers Act in the USA. Using acoustic recorders, we document vocal activity of four riparian-obligate species (Bell’s Vireo, Vireo bellii; Summer Tanager, Piranga rubra; Yellow Warbler, Setophaga petechial; and Yellow-billed Cuckoo, Coccyzus americanus) to determine species occurrence along a Wild and Scenic River. We established three study reaches along the perennial Lower Verde River, in the Sonoran Desert of central Arizona, USA. Nine acoustic recorders were used over the period of 80–120 days during the summer of 2018. We measured vegetation composition and structure in 100 m2 plots paired with acoustic recorders. Visualizing vocal activity showed that three species were calling and singing at each reach; whereas, one species, the cuckoo, had fewer recordings and occurred later in the summer. We demonstrate the utility of acoustic monitoring even when applied to rare birds in complex riparian habitats. This information is important for land management and conservation efforts concerning these species of interest and identifying important habitat features in Southwestern US riparian woodlands.


2021 ◽  
Author(s):  
Eleanor F Miller ◽  
Michela Leonardi ◽  
Robert Beyer ◽  
Mario Krapp ◽  
Marius Somveille ◽  
...  

During the glacial periods of the Pleistocene, swathes of the Northern Hemisphere were covered by ice sheets, tundra and permafrost leaving large areas uninhabitable for temperate and boreal species. The glacial refugia paradigm proposes that, during glaciations, species living in the Northern Hemisphere were forced southwards, forming isolated, insular populations that persisted in disjunct regions known as refugia. According to this hypothesis, as ice sheets retreated, species recolonised the continent from these glacial refugia, and the mixing of these lineages is responsible for modern patterns of genetic diversity. However, an alternative hypothesis is that complex genetic patterns could also arise simply from heterogenous post-glacial expansion dynamics, without separate refugia. Both mitochondrial and genomic data from the North American Yellow warbler (Setophaga petechia) shows the presence of an eastern and western clade, a pattern often ascribed to the presence of two refugia. Using a climate-informed spatial genetic modelling (CISGeM) framework, we were able to reconstruct past population sizes, range expansions, and likely recolonisation dynamics of this species, generating spatially and temporally explicit demographic reconstructions. The model captures the empirical genetic structure despite including only a single, large glacial refugium. The contemporary population structure observed in the data was generated during the expansion dynamics after the glaciation and is due to unbalanced rates of northward advance to the east and west linked to the melting of the icesheets. Thus, modern population structure in this species is consistent with expansion dynamics, and refugial isolation is not required to explain it, highlighting the importance of explicitly testing drivers of geographic structure.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247318
Author(s):  
Mathew Hepp ◽  
Eirikur Palsson ◽  
Sarah K. Thomsen ◽  
David J. Green

Dams and reservoirs alter natural water flow regimes with adverse effects on natural ecosystems. Quantifying and reducing these effects are important as global demands for energy and water, and the number of dams and reservoir, increase. However, costs and logistic constraints typically preclude experimental assessment of reservoir effects on the environment. We developed a stochastic individual-based model (IBM), parameterized using empirical data, to estimate the annual productivity of yellow warblers that breed in riparian habitat within the footprint of the Arrow Lakes Reservoir in British Columbia, Canada. The IBM incorporated information on breeding phenology, nest site selection, brood parasitism, daily nest survival, re-nesting probabilities and post-fledging survival. We used the IBM to estimate the effect of four different water management scenarios on annual productivity. We found that the IBM accurately estimated average nest success (0.39 ± 0.10 SD), the proportion of females that produced at least one fledgling during a breeding season (0.56 ± 0.11), and annual fledging success (2.06 ± 0.43) under current conditions. The IBM estimated that reservoir operations currently reduce the annual productivity of this population by 37%, from an average of 1.62 to 1.06 independent young/female. Delaying when reservoir water levels reach 435m asl (the minimum elevation occupied by yellow warblers) by approximately 2 weeks was predicted to increase annual productivity to 1.44 independent young/female. The standardized effect on annual productivity of reducing the maximum elevation of the reservoir so that yellow warbler habitat is not inundated (Cohen’s d = 1.52) or delaying when water is stored (Cohen’s d = 0.83) was primarily driven by inundation effects on post-fledging survival. Reservoir operation effects on breeding birds will be species specific, but this IBM can easily be modified to allow the environmental impacts on the entire breeding bird community to be incorporated into water management decisions.


2020 ◽  
Author(s):  
Andrew M. Wilson ◽  
Kenneth S. Boyle ◽  
Jennifer L. Gilmore ◽  
Cody J. Kiefer ◽  
Matthew F. Walker

AbstractDrones are now widely used to study wildlife, but applications for studying bioacoustics have been limited. Drones can be used to collect data on bird vocalizations, but an ongoing concern is that noise from the drones could change bird vocalization behavior. To test this behavioral impact we conducted an experiment using 30 sound localization arrays to track the song output of seven songbird species before, during, and after a 3-minute flight of a small quadcopter drone hovering at 50 m above ground level. We analyzed 8,303 song bouts, of which 2,285 song bouts of 184 individual birds were within 50 meters of the array centers. We used linear mixed effect models to assess patterns in song output showed patterns that could be attributed to the drone’s presence. We found no evidence of any effect of the drone for five species: American Robin Turdus migratorius, Common Yellowthroat Geothlypis trichas, Field Sparrow Spizella pusilla, Song Sparrow Melospiza melodia, and Indigo Bunting Passerina cyanea. However, we found a substantial decrease in Yellow Warbler Setophaga petechia song detections during the 3-minute drone hover, such that there was an 81% drop in detections in the 3rd minute (Wald-test, p<0.001), compared with before the drone’s introduction. In contrast, the number of singing Northern Cardinal Cardinalis cardinalis increased after the drone was introduced, and remained almost five-fold higher for 4-minutes after the drone departed (P<0.001). Further, we found an increase in cardinal contact/alarm calls when the drone was overhead, with the elevated calling-rate sustaining for 2 minutes after the drone had departed (P<0.001). Our study suggests that responses of songbirds to drones may be species-specific, an important consideration when proposing the use of drones in avian studies. We note that recent advances in drone technology have resulted in much quieter drones, which makes us hopeful that the impacts that we detected could be greatly reduced.


2020 ◽  
Author(s):  
Rachael A. Bay ◽  
Daniel S. Karp ◽  
James F. Saracco ◽  
William R.L. Anderegg ◽  
Luke Frishkoff ◽  
...  

AbstractAdaptation across climate gradients can provide the raw material needed for evolutionary response to climate change. In migratory species, studies of local climate adaptation are made challenging by seasonal movement, where it is unclear to what extent individuals track their local climate niches across the annual cycle. In the migratory songbird yellow warbler (Setophaga petechia), we test the hypothesis that individuals track similar climates between their breeding and wintering ranges. Further, we examine whether adaptation to local climate might lead to morphological differences among populations and different demographic responses to temporal climate variability. We find a correlation between wintering and breeding precipitation but not temperature regimes at the level of the individual bird. Specifically, birds from the driest wintering regions migrate to the driest breeding regions. Additionally, we find an association between bill size and breeding season precipitation which, given documented climate-associated genomic variation, suggests adaptation to local precipitation gradients might exist on the breeding grounds. Finally, we show geographic variation in the effect of precipitation on demography, with higher precipitation associated with population increases in some regions and declines in others. Taken together, our results suggest that variation in climate optima exists across the breeding range of yellow warblers and provide a potential mechanism for parallel selection across the annual cycle.


The Condor ◽  
2020 ◽  
Vol 122 (2) ◽  
Author(s):  
Laura Cardenas-Ortiz ◽  
Nicholas J Bayly ◽  
Kevin J Kardynal ◽  
Keith A Hobson

Abstract Migratory bottlenecks concentrate individuals and populations of Nearctic–Neotropical migrants from across vast breeding areas. The extent to which such concentrations occur has important ramifications for interpreting migratory connectivity and for the vulnerability of populations throughout the annual cycle but investigations of such phenomena are rare. We inferred breeding origins of 11 species of Nearctic–Neotropical migrants captured during fall migration in the Darién region, northwestern Colombia, using feather stable-hydrogen isotope values (δ 2Hf). Our objectives were to determine (1) the extent to which this region acts as a catchment for individuals from across a species’ breeding range, (2) if temporal patterns of arrival arise as a function of migration distance inferred from δ 2Hf, and (3) if phenological differences among species segregate populations. The Darién concentrated populations of 6 species, with individuals potentially derived from 78% to 94% of their respective North American breeding ranges. The catchment area for the remaining 5 species covered 40–72% of breeding ranges, with a bias in origin from the west (e.g., Northern Waterthrush [Parkesia noveboracensis], Swainson’s Thrush [Catharus ustulatus]), north or center (Yellow Warbler [Setophaga petechia]) of their range. Differential timing in the migration of populations occurred in 6 species, generating a degree of temporal segregation. In contrast, peak migration for all species occurred in October, resulting in high overlap among species in their use of the Darién. Overall, our results describe high mixing of populations in the Darién for several species, which, given the region’s highly restricted geographic extent, suggests that a bottleneck effect occurs; however, comparisons with other regions in Central America and northern South America are required. The combination of extensive population mixing and limited temporal segregation over a narrow geographical area suggests that long-distance migrants may be especially vulnerable to events occurring in such regions, including adverse weather conditions and anthropogenic land cover change.


2020 ◽  
Author(s):  
Guy M. Kirwan ◽  
David Pearson ◽  
Josep del Hoyo ◽  
Nigel Collar ◽  
Peter F. D. Boesman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document