physiologic dead space
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
pp. 2102334
Author(s):  
Robert Naeije ◽  
Manuel J. Richter ◽  
Lewis J. Rubin

Pulmonary arterial hypertension (PAH) is a rare dyspnea-fatigue syndrome caused by a progressive increase in pulmonary vascular resistance (PVR) and eventual right ventricular (RV) failure. In spite of extensive pulmonary vascular remodeling, lung function in PAH is generally well preserved, with hyperventilation and increased physiologic dead space, but minimal changes in lung mechanics and only mild to moderate hypoxemia and hypocapnia. Hypoxemia is mainly caused by a low mixed venous PO2 from a decreased cardiac output. Hypocapnia is mainly caused by an increased chemosensitivity. Exercise limitation in PAH is cardiovascular rather than ventilatory or muscular. The extent of pulmonary vascular disease in PAH is defined by multipoint pulmonary vascular pressure-flow relationships with a correction for hematocrit. Pulsatile pulmonary vascular pressure-flow relationships in PAH allow for the assessment of RV hydraulic load. This analysis is possible either in the frequency-domain or in the time-domain. The RV in PAH adapts to increased afterload by an increased contractility to preserve its coupling to the pulmonary circulation. When this homeometric mechanism is exhausted, the RV dilates to preserve flow output by an additional heterometric mechanism. Right heart failure is then diagnosed by imaging of increased right heart dimensions and clinical systemic congestion signs and symptoms. The coupling of the RV to the pulmonary circulation is assessed by the ratio of end-systolic to arterial elastances, but these measurements are difficult. Simplified estimates of RV-PA coupling can be obtained by magnetic resonance or echocardiographic imaging of ejection fraction.


2021 ◽  
Vol 30 (161) ◽  
pp. 200214
Author(s):  
Jason Weatherald ◽  
Brianne Philipenko ◽  
David Montani ◽  
Pierantonio Laveneziana

Cardiopulmonary exercise testing (CPET) is a frequently used tool in the differential diagnosis of dyspnoea. Ventilatory inefficiency, defined as high minute ventilation (V′E) relative to carbon dioxide output (V′CO2), is a hallmark characteristic of pulmonary vascular diseases, which contributes to exercise intolerance and disability in these patients. The mechanisms of ventilatory inefficiency are multiple and include high physiologic dead space, abnormal chemosensitivity and an altered carbon dioxide (CO2) set-point. A normal V′E/V′CO2 makes a pulmonary vascular disease such as pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) unlikely. The finding of high V′E/V′CO2 without an alternative explanation should prompt further diagnostic testing to exclude PAH or CTEPH, particularly in patients with risk factors, such as prior venous thromboembolism, systemic sclerosis or a family history of PAH. In patients with established PAH or CTEPH, the V′E/V′CO2 may improve with interventions and is a prognostic marker. However, further studies are needed to clarify the added value of assessing ventilatory inefficiency in the longitudinal follow-up of patients.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhterem Duyu ◽  
Anıl Dogan Bektas ◽  
Zeynep Karakaya ◽  
Meral Bahar ◽  
Aybuke Gunalp ◽  
...  

AbstractThe objective of this study was to evaluate a novel microstream method by comparison with PaCO2 and the more standard mainstream capnometer in intubated pediatric patients. We hypothesized that the novel microstream method would superior compared to the traditional mainstream method in predicting PaCO2. This was a prospective single-center comparative study. The study was carried out on 174 subjects with a total of 1338 values for each method. Data were collected prospectively from mainstream and microstream capnometer simultaneously and compared with PaCO2 results. Although both mainstream PetCO2 (mainPetCO2) and microstream PetCO2 (microPetCO2) were moderately correlated (r = 0.63 and r = 0.68, respectively) with PaCO2 values, mainPetCO2 was in better agreement with PaCO2 in all subjects (bias ± precision values of 3.8 ± 8.9 and 7.3 ± 8.2 mmHg, respectively). In those with severe pulmonary disease, the mainPetCO2 and microPetCO2 methods were highly correlated with PaCO2 (r = 0.80 and r = 0.81, respectively); however, the biases of both methods increased (14.8 ± 9.1 mmHg and 16.2 ± 9.0 mmHg, respectively). In cases with increased physiologic dead space ventilation, the agreement levels of mainPetCO2 and microPetCO2 methods became distorted (bias ± precision values of 20.9 ± 11.2 and 25.0 ± 11.8 mm Hg, respectively) even though mainPetCO2 and microPetCO2 were highly correlated (r = 0.78 and r = 0.78, respectively). It was found that the novel microstream capnometer method for PetCO2 measurements provided no superiority to the traditional mainstream method. Both capnometer methods may be useful in predicting the trend of PaCO2 due to significant correlations with the gold standard measurement in cases with severe pulmonary disease or increased physiological dead space –despite reduced accuracy.


Thorax ◽  
2019 ◽  
Vol 74 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Martina Kiefmann ◽  
Sascha Tank ◽  
Marc-Oliver Tritt ◽  
Paula Keller ◽  
Kai Heckel ◽  
...  

BackgroundIn acute respiratory distress syndrome (ARDS), pulmonary perfusion failure increases physiologic dead space ventilation (VD/VT), leading to a decline of the alveolar CO2 concentration [CO2]iA. Although it has been shown that alveolar hypocapnia contributes to formation of atelectasis and surfactant depletion, a typical complication in ARDS, the underlying mechanism has not been elucidated so far.MethodsIn isolated perfused rat lungs, cytosolic or mitochondrial Ca2+ concentrations ([Ca2+]cyt or [Ca2+]mito, respectively) of alveolar epithelial cells (AECs), surfactant secretion and the projected area of alveoli were quantified by real-time fluorescence or bright-field imaging (n=3–7 per group). In ventilated White New Zealand rabbits, the left pulmonary artery was ligated and the size of subpleural alveoli was measured by intravital microscopy (n=4 per group). Surfactant secretion was determined in the bronchoalveolar lavage (BAL) by western blot.ResultsLow [CO2]iA decreased [Ca2+]cyt and increased [Ca2+]mito in AECs, leading to reduction of Ca2+-dependent surfactant secretion, and alveolar ventilation in situ. Mitochondrial inhibition by ruthenium red or rotenone blocked these responses indicating that mitochondria are key players in CO2 sensing. Furthermore, ligature of the pulmonary artery of rabbits decreased alveolar ventilation, surfactant secretion and lung compliance in vivo. Addition of 5% CO2 to the inspiratory gas inhibited these responses.ConclusionsAccordingly, we provide evidence that alveolar hypocapnia leads to a Ca2+ shift from the cytosol into mitochondria. The subsequent decline of [Ca2+]cyt reduces surfactant secretion and thus regional ventilation in lung regions with high VD/VT. Additionally, the regional hypoventilation provoked by perfusion failure can be inhibited by inspiratory CO2 application.


2013 ◽  
Vol 59 (11) ◽  
pp. 1611-1618 ◽  
Author(s):  
R. H. Kallet ◽  
H. Zhuo ◽  
K. D. Liu ◽  
C. S. Calfee ◽  
M. A. Matthay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document