size of giant component
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 4)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mehmet Emin Aktas ◽  
Thu Nguyen ◽  
Sidra Jawaid ◽  
Rakin Riza ◽  
Esra Akbas

AbstractDiffusion on networks is an important concept in network science observed in many situations such as information spreading and rumor controlling in social networks, disease contagion between individuals, and cascading failures in power grids. The critical interactions in networks play critical roles in diffusion and primarily affect network structure and functions. While interactions can occur between two nodes as pairwise interactions, i.e., edges, they can also occur between three or more nodes, which are described as higher-order interactions. This report presents a novel method to identify critical higher-order interactions in complex networks. We propose two new Laplacians to generalize standard graph centrality measures for higher-order interactions. We then compare the performances of the generalized centrality measures using the size of giant component and the Susceptible-Infected-Recovered (SIR) simulation model to show the effectiveness of using higher-order interactions. We further compare them with the first-order interactions (i.e., edges). Experimental results suggest that higher-order interactions play more critical roles than edges based on both the size of giant component and SIR, and the proposed methods are promising in identifying critical higher-order interactions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Guangjian Ren

Air route network (ARN) is the important carrier of air transport, and its robustness has important influence on the safety and stability of air transport. To analyze the robustness of ARN, in this paper, a topology potential relative entropy (TPRE) model is proposed, based on topology potential (TP) and relative entropy (RE) methods. Firstly, the TPRE model is established as the theoretical basis for the research. Secondly, an air route reduction network (ARRN) model is constructed according to real Chinese ARN. Besides, the basic topology features of ARRN are given by complex network theory. To prove the applicability, objectivity, and accuracy of the proposed method, attack strategies including random, degree, betweenness, closeness, eigenvector, and Bonacich are used to attack ARRN. Eventually, the performance of ARRN robustness is analyzed by network efficiency, size of giant component, and the proposed TPRE model. This conclusion has practical significance for optimizing ARN structure and improving airspace efficiency.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Kai Gong ◽  
Yu Huang ◽  
Xiao-long Chen ◽  
Qing Li ◽  
Ming Tang

Many real infrastructure systems such as power grids and communication networks across cities not only depend on each other but also have community structures. This observation derives a new research subject of the interdependent community networks (ICNs). Recent works showed that the ICNs are extremely vulnerable to the failure of interconnected nodes between communities. Such vulnerability is prone to cause avalanche breakdown of the ICNs. How to improve the robustness of ICNs remains a challenge. In this paper, we propose a new target recovery strategy in the self-awareness recovery model, called recovery strategy based on community structures (RCS). The self-awareness recovery model repairs and reactivates the original pair of failed nodes that belong to mutual boundary of networks during cascading failures. The key insight is that the RCS explicitly considers both intercommunity links and intracommunity links. In this paper, we compare RCS with the state-of-the-art approaches based on randomness, degree centrality, and local centrality. We find that the RCS outperforms the other three strategies on the size of giant component, the existence probability of giant component, the number of iterative cascade steps, and the average degree of the remaining network. Moreover, RCS is robust against a given noise, and the optimal parameter of RCS remains stable even if the recovery ratio varies.


2014 ◽  
Vol 10 (3) ◽  
pp. 321-330 ◽  
Author(s):  
Shinji Sakamoto ◽  
Elis Kulla ◽  
Tetsuya Oda ◽  
Makoto Ikeda ◽  
Leonard Barolli ◽  
...  

One of the key advantages of Wireless Mesh Networks (WMNs) is their importance for providing cost-efficient broadband connectivity. There are issues for achieving the network connectivity and user coverage, which are related with the node placement problem. In this work, we consider Simulated Annealing Algorithm (SA) temperature and Iteration per phase for the router node placement problem in WMNs. We want to find the optimal distribution of router nodes in order to provide the best network connectivity and provide the best coverage in a set of Normal distributed clients. From simulation results, we found how to optimize both the size of Giant Component and number of covered mesh clients. When the number of iterations per phase is big, the performance is better in WMN-SA System. From for SA temperature, when SA temperature is 0 and 1, the performance is almost same. When SA temperature is 2 and 3 or more, the performance decrease because there are many kick ups.


Author(s):  
Admir Barolli ◽  
Makoto Takizawa ◽  
Tetsuya Oda ◽  
Evjola Spaho ◽  
Leonard Barolli ◽  
...  

In this paper, the authors propose and implement a system based on Genetic Algorithms (GAs) called WMN-GA. They evaluated the performance of WMN-GA for 0.7 crossover rate and 0.3 mutation rate, exponential ranking and different distribution of clients considering size of giant component and number of covered users parameters. The simulation results show that for normal distribution the system has better performance. The authors also carried out simulations for 0.8 crossover rate and 0.2 mutation rate. The simulation results show that the setting for 0.7 crossover rate and 0.3 mutation rate offers better connectivity and user coverage.


Sign in / Sign up

Export Citation Format

Share Document