manganese transport
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 16)

H-INDEX

31
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Tanya Puccio ◽  
Seon‐Sook An ◽  
Alexander C. Schultz ◽  
Claudia A. Lizarraga ◽  
Ashley S. Bryant ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yaping Yan ◽  
Xiaoyan Yi ◽  
Yanchao Duan ◽  
Bin Jiang ◽  
Tianzhuang Huang ◽  
...  

Abstract Background The spontaneous osteoarthritis (OA) in rhesus macaque is similar to OA in human, which maintains an upright body posture and shows very similar biomechanical properties of bones to humans. At present, there is no good treatment for OA. This study aims to explore relationship between OA and intestinal microbiota, and provide a reference for the treatment of clinical OA. Results We collected colonic contents of the 20 rhesus macaque (6–15 years old, female) for intestinal microbiota analysis by metagenomics sequencing, of which 10 were spontaneous OA monkeys and 10 were normal monkeys. Our results showed the diversity of gut microbiota in monkeys with OA was decreased compared to the normal monkeys (p = 0.16). Mollicutes, Tenericutes, Coprobacillus and Faecalitalea may be biomarkers for the monkeys of OA. Lactobacillus found significantly increased in OA monkeys. Prevotella and Ruminococcus were higher in the normal group than OA group. Zinc/manganese transport system permease protein (p = 0.0011) and Cyclopropane-fatty-acyl-phospholipid synthase (p = 0.0012) are a microbiota metabolic pathway related to cartilage production. Conclusions Our results indicate that the diversity and composition of intestinal microbiota in monkeys with OA are different compared to the normal monkeys. we have found microbes that may be a biomarker for the diagnosis of osteoarthritis. Functional analysis of the microbiota also predicts cartilage damage in the monkeys with osteoarthritis. Non-human primates are closely related to humans, so this study can provide a reference for the development of drugs for the treatment of OA.


2021 ◽  
Vol 22 (13) ◽  
pp. 6773
Author(s):  
Yuze Wu ◽  
Guojun Wei ◽  
Ningning Zhao

As a newly identified manganese transport protein, ZIP14 is highly expressed in the small intestine and liver, which are the two principal organs involved in regulating systemic manganese homeostasis. Loss of ZIP14 function leads to manganese overload in both humans and mice. Excess manganese in the body primarily affects the central nervous system, resulting in irreversible neurological disorders. Therefore, to prevent the onset of brain manganese accumulation becomes critical. In this study, we used Zip14−/− mice as a model for ZIP14 deficiency and discovered that these mice were born without manganese loading in the brain, but started to hyper-accumulate manganese within 3 weeks after birth. We demonstrated that decreasing manganese intake in Zip14−/− mice was effective in preventing manganese overload that typically occurs in these animals. Our results provide important insight into future studies that are targeted to reduce the onset of manganese accumulation associated with ZIP14 dysfunction in humans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Natalie Hoecker ◽  
Yvonne Hennecke ◽  
Simon Schrott ◽  
Giada Marino ◽  
Sidsel Birkelund Schmidt ◽  
...  

The protein family 0016 (UPF0016) is conserved through evolution, and the few members characterized share a function in Mn2+ transport. So far, little is known about the history of these proteins in Eukaryotes. In Arabidopsis thaliana five such proteins, comprising four different subcellular localizations including chloroplasts, have been described, whereas non-photosynthetic Eukaryotes have only one. We used a phylogenetic approach to classify the eukaryotic proteins into two subgroups and performed gene-replacement studies to investigate UPF0016 genes of various origins. Replaceability can be scored readily in the Arabidopsis UPF0016 transporter mutant pam71, which exhibits a functional deficiency in photosystem II. The N-terminal region of the Arabidopsis PAM71 was used to direct selected proteins to chloroplast membranes. Transgenic pam71 lines overexpressing the closest plant homolog (CMT1), human TMEM165 or cyanobacterial MNX successfully restored photosystem II efficiency, manganese binding to photosystem II complexes and consequently plant growth rate and biomass production. Thus AtCMT1, HsTMEM165, and SynMNX can operate in the thylakoid membrane and substitute for PAM71 in a non-native environment, indicating that the manganese transport function of UPF0016 proteins is an ancient feature of the family. We propose that the two chloroplast-localized UPF0016 proteins, CMT1 and PAM71, in plants originated from the cyanobacterial endosymbiont that gave rise to the organelle.


2021 ◽  
Author(s):  
Tanya Puccio ◽  
Alexander C Schultz ◽  
Claudia A Lizarraga ◽  
Ashley S Bryant ◽  
David J Culp ◽  
...  

Streptococcus sanguinis is an oral commensal and an etiological agent of infective endocarditis. Previous studies have identified the SsaACB manganese transporter as essential for endocarditis virulence; however, the significance of SsaACB in the oral environment has never been examined. Here we report that a ΔssaACB mutant of strain SK36 exhibits reduced growth and manganese uptake under acidic conditions. Further studies revealed that these deficits resulted from the decreased activity of TmpA, shown in the accompanying paper to function as a ZIP-family manganese transporter. Transcriptomic analysis of fermentor-grown cultures of SK36 WT and ΔssaACB strains identified pH-dependent changes related to carbon catabolite repression in both strains, though their magnitude was generally greater in the mutant. In strain VMC66, which possesses a MntH transporter, loss of SsaACB did not significantly alter growth or cellular manganese levels under the same conditions. Interestingly, there were only modest differences between SK36 and its ΔssaACB mutant in competition with Streptococcus mutans in vitro and in a murine oral colonization model. Our results suggest that the heterogeneity of the oral environment may provide a rationale for the variety of manganese transporters found in S. sanguinis and point to strategies for enhancing the safety of oral probiotics.


2021 ◽  
Vol 1868 (1) ◽  
pp. 118890
Author(s):  
Qingli Liu ◽  
Saiid Barker ◽  
Mitchell D. Knutson

Author(s):  
Senthilvelan Santhakumar ◽  
Jospaul Lukas ◽  
Gopikrishnan Unnikrishnan ◽  
Bejoy Thomas ◽  
Chandrasekharan Kesavadas

AbstractHypermanganesemia with dystonia and polycythemia along with liver cirrhosis is a rare syndromic complex that is associated with a characteristic genetic mutation and a typical appearance in the T1-weighted noncontrast image. We report the neuroimaging findings of two siblings affected by this syndrome. There are few reported cases in literature with similar findings. Diagnosing this problem will help in improving the outcomes as the condition is treatable. We have reviewed the clinical and imaging findings of this condition and the differential diagnosis related to it.


Sign in / Sign up

Export Citation Format

Share Document