scholarly journals Manganese transport by Streptococcus sanguinis in acidic conditions and its impact on growth in vitro and in vivo

2021 ◽  
Author(s):  
Tanya Puccio ◽  
Alexander C Schultz ◽  
Claudia A Lizarraga ◽  
Ashley S Bryant ◽  
David J Culp ◽  
...  

Streptococcus sanguinis is an oral commensal and an etiological agent of infective endocarditis. Previous studies have identified the SsaACB manganese transporter as essential for endocarditis virulence; however, the significance of SsaACB in the oral environment has never been examined. Here we report that a ΔssaACB mutant of strain SK36 exhibits reduced growth and manganese uptake under acidic conditions. Further studies revealed that these deficits resulted from the decreased activity of TmpA, shown in the accompanying paper to function as a ZIP-family manganese transporter. Transcriptomic analysis of fermentor-grown cultures of SK36 WT and ΔssaACB strains identified pH-dependent changes related to carbon catabolite repression in both strains, though their magnitude was generally greater in the mutant. In strain VMC66, which possesses a MntH transporter, loss of SsaACB did not significantly alter growth or cellular manganese levels under the same conditions. Interestingly, there were only modest differences between SK36 and its ΔssaACB mutant in competition with Streptococcus mutans in vitro and in a murine oral colonization model. Our results suggest that the heterogeneity of the oral environment may provide a rationale for the variety of manganese transporters found in S. sanguinis and point to strategies for enhancing the safety of oral probiotics.

2021 ◽  
Author(s):  
Tanya Puccio ◽  
Seon‐Sook An ◽  
Alexander C. Schultz ◽  
Claudia A. Lizarraga ◽  
Ashley S. Bryant ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 8-15
Author(s):  
Ainaz Mihanfar ◽  
Niloufar Targhazeh ◽  
Shirin Sadighparvar ◽  
Saber Ghazizadeh Darband ◽  
Maryam Majidinia ◽  
...  

Abstract Doxorubicin (DOX) is an effective chemotherapeutic agent used for the treatment of various types of cancer. However, its poor solubility, undesirable side effects, and short half-life have remained a challenge. We used a formulation based on graphene oxide as an anticancer drug delivery system for DOX in MCF-7 breast cancer cells, to address these issues. In vitro release studies confirmed that the synthesized formulation has an improved release profile in acidic conditions (similar to the tumor microenvironment). Further in vitro studies, including MTT, uptake, and apoptosis assays were performed. The toxic effects of the nanocarrier on the kidney, heart and liver of healthy rats were also evaluated. We observed that the DOX-loaded carrier improved the cytotoxic effect of DOX on the breast cell line compared to free DOX. In summary, our results introduce the DOX-loaded carrier as a potential platform for in vitro targeting of cancer cells and suggest further studies are necessary to investigate its in vivo anti-cancer potential.


2018 ◽  
Vol 188 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Tanara V. Peres ◽  
Kyle J. Horning ◽  
Julia Bornhorst ◽  
Tanja Schwerdtle ◽  
Aaron B. Bowman ◽  
...  

2019 ◽  
Vol 116 (44) ◽  
pp. 22307-22313 ◽  
Author(s):  
Senthil Kumar Velusamy ◽  
Vandana Sampathkumar ◽  
Narayanan Ramasubbu ◽  
Bruce J. Paster ◽  
Daniel H. Fine

Aggregatibacter actinomycetemcomitans is associated with aggressive periodontitis resulting in premature tooth loss in adolescents. Tooth adherence and biofilm persistence are prerequisites for survival in the oral domain. Here, using a rhesus monkey model, 16S rRNA sequencing, and weighted network analysis, we assessed colonization of A. actinomycetemcomitans variants and ascertained microbial interactions in biofilm communities. Variants in A. actinomycetemcomitans leukotoxin (ltx) were created, labeled, inoculated, and compared with their progenitor strain for in vivo colonization. Samples of tooth-related plaque were assessed for colonization at baseline and after debridement and inoculation of labeled strains. Null, minimal, and hyper-Ltx–producing strains were created and assessed for hydroxyapatite binding and biofilm formation in vitro. Ltx-hyperproducing strains colonized with greater prevalence and at higher levels than wild type or ltx mutants (P = 0.05). Indigenous and inoculated A. actinomycetemcomitans strains that attached were associated with lactate-producing species (i.e., Leptotrichia, Abiotrophia, and Streptoccocci). A. actinomycetemcomitans was found at 0.13% of the total flora at baseline and at 0.05% 4 wk after inoculation. In vivo data were supported by in vitro results. We conclude that hyper-Ltx production affords these strains with an attachment advantage providing a foothold for competition with members of the indigenous microbiota. Increased attachment can be linked to ltx gene expression and up-regulation of adherence-associated genes. Growth of attached A. actinomycetemcomitans in vivo was enhanced by lactate availability due to consorting species. These associations provide A. actinomycetemcomitans with the constituents required for its colonization and survival in the complex and competitive oral environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Nylev Vargas-Cruz ◽  
Joel Rosenblatt ◽  
Ruth A Reitzel ◽  
Anne-Marie Chaftari ◽  
Ray Hachem ◽  
...  

CAUTI remains a serious healthcare issue for incontinent patients whose urine drainage is managed by catheters. A novel double-balloon Foley catheter was developed which was capable of irrigating the extraluminal catheter surfaces within the periurethral space between the urethral-bladder junction and meatus. The catheter has a retention cuff that is inflated to secure the catheter in the bladder and a novel irrigation cuff proximal to the urethral-bladder junction capable of providing periurethral irrigation from the urethral-bladder junction to the meatus. Uniform periurethral irrigation was demonstrated in an ex vivo porcine model by adding a dye to the antimicrobial urethral irrigation solution. An in vitro biofilm colonization model was adapted to study the ability of periurethral irrigation with a newly developed antimicrobial combination consisting of polygalacturonic acid + caprylic acid (PG + CAP) to prevent axial colonization of the extraluminal urethral indwelling catheter shaft by common uropathogens. The extraluminal surface of control catheters that were not irrigated formed biofilms along the entire axial urethral tract after 24 hours. Significant (p<0.001) inhibition of colonization was seen against multidrug-resistant Pseudomonas aeruginosa (PA), carbapenem-resistant Escherichia coli (EC), and carbapenem-resistant Klebsiella pneumoniae (KB). For other common uropathogens including Candida albicans (CA), Proteus mirabilis (PR), and Enterococcus faecalis (EF), a first irrigation treatment completely inhibited colonization of half of the indwelling catheter closest to the bladder and a second treatment largely disinfected the remaining intraurethral portion of the catheter towards the meatus. The novel Foley catheter and PG + CAP antimicrobial irrigant prevented biofilm colonization in an in vitro CAUTI model and merits further testing in an in vivo CAUTI prevention model.


2019 ◽  
Vol 10 (4) ◽  
pp. 54 ◽  
Author(s):  
Joseph Lazraq Bystrom ◽  
Michael Pujari-Palmer

Phosphoserine modified cements (PMC) exhibit unique properties, including strong adhesion to tissues and biomaterials. While TTCP-PMCs remodel into bone in vivo, little is known regarding the bioactivity and physiochemical changes that occur during resorption. In the present study, changes in the mechanical strength and composition were evaluated for 28 days, for three formulations of αTCP based PMCs. PMCs were significantly stronger than unmodified cement (38–49 MPa vs. 10 MPa). Inclusion of wollastonite in PMCs appeared to accelerate the conversion to hydroxyapatite, coincident with slight decrease in strength. In non-wollastonite PMCs the initial compressive strength did not change after 28 days in PBS (p > 0.99). Dissolution/degradation of PMC was evaluated in acidic (pH 2.7, pH 4.0), and supersaturated fluids (simulated body fluid (SBF)). PMCs exhibited comparable mass loss (<15%) after 14 days, regardless of pH and ionic concentration. Electron microscopy, infrared spectroscopy, and X-ray analysis revealed that significant amounts of brushite, octacalcium phosphate, and hydroxyapatite reprecipitated, following dissolution in acidic conditions (pH 2.7), while amorphous calcium phosphate formed in SBF. In conclusion, PMC surfaces remodel into metastable precursors to hydroxyapatite, in both acidic and neutral environments. By tuning the composition of PMCs, durable strength in fluids, and rapid transformation can be obtained.


1996 ◽  
Vol 10 (2) ◽  
pp. 159-169 ◽  
Author(s):  
C.E. Smith ◽  
M. Issid ◽  
H.C. Margolis ◽  
E.C. Moreno

The objectives of this study were to measure pH in developing enamel at progressively older (more mature) stages of amelogenesis in vivo, and then to formulate synthetic enamel fluid mixtures that approximated these pH values for in vitro studies. The ultimate goal was to characterize the molecular weights of proteinases visualized by enzymograms incubated in synthetic enamel fluid using gelatin and casein as substrates. For most experiments. the proteinases were extracted en masse from small freeze-dried enamel strips directly into a non-reducing sample preparation buffer. In some experiments, we pre-treated the enamel strips with acetic acid to determine if this common method for demineralization and protein extraction caused any changes in the activity levels of the enamel proteinases. In other experiments, we first soaked enamel strips in synthetic enamel fluid to determine solubility of the proteinases within an aqueous phase. The results indicated that the pH of developing enamel remained fairly constant near pH 7.23 across the secretory stage, but it was generally more acidic (6.93) and fluctuated in focal areas between mildly acidic (6.2-6.8) and near-neutral (7.2) conditions across the maturation stage. The pH then slowly rose to near 7.35 when the enamel was almost mature (hard). The acidic conditions were generally inhibitory to most enamel proteinases, but there were some caseinase activities in mid-maturation-stage enamel near 23-30 kDa which appeared to be activated by weakly acidic conditions (pH 6.28). Pre-treatment of enamel samples with 0.5 M acetic acid markedly altered the overall profile of enamel proteinases, causing activation of some latent proteinase activities and permanent inhibition of other activities. Most proteinases in whole homogenates were insoluble in synthetic enamel fluid. This suggests that they may be tightly bound, directly or indirectly, to matrix proteins or mineral components in situ.


2011 ◽  
Vol 22 (6) ◽  
pp. 479-485 ◽  
Author(s):  
Lucas Amaral Fontanari ◽  
Shelon Cristina Souza Pinto ◽  
Rodrigo Cavassim ◽  
Rubens Spin-Neto ◽  
Eduardo de Paula Ishi ◽  
...  

Although in vitro studies have shown encouraging results for root surface conditioning with demineralizing agents, in vivo studies have failed to show its benefits in periodontal healing. This can be attributed to several factors, among which, the hypermineralization of dental surface. Therefore, this in vitro study compared, using scanning electron microscopy (SEM), the effect of root surface conditioning with different conditioners (1% and 25% citric acid, 24% EDTA and 50 mg/mL tetracycline hydrochloride) in impacted teeth and in teeth that had their roots exposed to the oral environment. One trained examiner assessed the SEM micrographs using a root surface modification index. There was a tendency of more root surface modification in the group of impacted teeth, suggesting that the degree of root mineralization influences its chemical demineralization.


2010 ◽  
Vol 105 (7) ◽  
pp. 1026-1035 ◽  
Author(s):  
Leslie Couëdelo ◽  
Carole Boué-Vaysse ◽  
Laurence Fonseca ◽  
Emeline Montesinos ◽  
Sandrine Djoukitch ◽  
...  

The bioavailability of α-linolenic acid (ALA) from flaxseed oil in an emulsified formv.a non-emulsified form was investigated by using two complementary approaches: the first one dealt with the characterisation of the flaxseed oil emulsion inin vitrogastrointestinal-like conditions; the second one compared the intestinal absorption of ALA in rats fed the two forms of the oil. Thein vitrostudy on emulsified flaxseed oil showed that decreasing the pH from 7·3 to 1·5 at the physiological temperature (37°C) induced instantaneous oil globule coalescence. Some phase separation was observed under acidic conditions that vanished after further neutralisation. The lecithin used to stabilise the emulsions inhibited TAG hydrolysis by pancreatic lipase. In contrast, lipid solubilisation by bile salts (after lipase and phospholipase hydrolysis) was favoured by preliminary oil emulsification. Thein vivoabsorption of ALA in thoracic lymph duct-cannulated rats fed flaxseed oil, emulsified or non-emulsified, was quantified. Oil emulsification significantly favoured the rate and extent of ALA recovery as measured by the maximum ALA concentration in the lymph (Cmax = 14 mg/ml at 3 h in the emulsion groupv.9 mg/ml at 5 h in the oil group;P < 0·05). Likewise, the area under the curve of the kinetics was significantly higher in the emulsion group (48 mg × h/ml for rats fed emulsionv.26 mg × h/ml for rats fed oil;P < 0·05). On the whole, ALA bioavailability was improved with flaxseed oil ingested in an emulsified state. Data obtained from thein vitrostudies helped to partly interpret the physiological results.


2018 ◽  
Author(s):  
Yi-Cheng Wang ◽  
Jing-Jing Sun ◽  
Yan-Fen Qiu ◽  
Xiao-Jun Gong ◽  
Li Ma ◽  
...  

AbstractAnthocyanins are the key factors controlling the coloration of plant tissues. However, the molecular mechanism underlying the effects of environmental pH on the synthesis of apple anthocyanins is unclear. In this study, we analyzed the anthocyanin contents of apple calli cultured in media at different pHs (5.5, 6.0, and 6.5). The highest anthocyanin content was observed at pH 6.0. Additionally, the moderately acidic conditions up-regulated the expression of MdMYB3 as well as specific anthocyanin biosynthesis structural genes (MdDFR and MdUFGT). Moreover, the anthocyanin content was higher in calli overexpressing MdMYB3 than in the wild-type controls at different pHs. Yeast one-hybrid assay results indicated that MdMYB3 binds to the MdDFR and MdUFGT promoters in vivo. An analysis of the MdDFR and MdUFGT promoters revealed multiple MYB-binding sites. Meanwhile, electrophoretic mobility shift assays confirmed that MdMYB3 binds to the MdDFR and MdUFGT promoters in vitro. Furthermore, GUS promoter activity assays suggested that the MdDFR and MdUFGT promoter activities are enhanced by acidic conditions, and the binding of MdMYB3 may further enhance activity. These results implied that an acid-induced apple MYB transcription factor (MdMYB3) promotes anthocyanin accumulation by up-regulating the expression of MdDFR and MdUFGT under moderately acidic conditions.


Sign in / Sign up

Export Citation Format

Share Document