manganese uptake
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 25)

H-INDEX

33
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Ayesha Ijaz ◽  
Muhammad Zahid Mumtaz ◽  
Xiukang Wang ◽  
Maqshoof Ahmad ◽  
Muhammad Saqib ◽  
...  

Manganese (Mn) is an essential micronutrient for plant growth that is involved in the structure of photosynthetic proteins and enzymes. Mn deficiency is widespread mainly in dry, calcareous, and sandy soil, which leads to a significant decrease in crop yield. Mn-reducing bacteria promote the solubilization of Mn minerals, thus increasing Mn availability in soil. The present study aimed to assess the Mn solubilizing ability and plant growth-promoting potential of Bacillus spp. strains for maize plants with insoluble Mn compounds. Several Mn-solubilizing bacterial (MSB) strains were isolated from the maize rhizosphere using nutrient agar media amended with 50 mM MnO2. These strains were screened based on qualitative and quantitative solubilization of Mn, phosphorus, potassium, and zinc and production of ammonia. The majority of MSB strains were positive for catalase, protease, amylase, and oxidase activity, while more than 60% of tested strains were positive for lipase activity, and the production of indole-3-acetic acid and siderophores. Forty-five percent of the tested strains also showed solubilization of potassium. All the MSB strains were evaluated for their ability to promote plant growth and Mn uptake in the presence of MnO2 under axenic sand culture conditions. The results revealed that inoculation with MSB strains under sand culture significantly improved the growth of maize seedlings except for strains ASH7, ASH10, and ASH12. Comparatively, strains ASH6, ASH11, ASH19, ASH20, and ASH22 demonstrated a better increase in plant growth, fresh and dry biomass, and Mn uptake in roots and shoots than the other strains tested. All of these strains were identified as Bacillus spp. through 16S rRNA partial gene sequencing. Maize inoculation with these selected identified MSB strains also resulted in an increase in maize growth and nutrient uptake in maize roots and shoots under soil culture conditions in the presence of native soil Mn. The current study highlights the importance of MSB strain inoculation which could be a potential bioinoculants to promote plant growth under Mn deficiency.


Heart ◽  
2021 ◽  
pp. heartjnl-2021-319926
Author(s):  
Trisha Singh ◽  
Thomas A Kite ◽  
Shruti S Joshi ◽  
Nick B Spath ◽  
Lucy Kershaw ◽  
...  

ObjectivesTo determine the contribution of comorbidities on the reported widespread myocardial abnormalities in patients with recent COVID-19.MethodsIn a prospective two-centre observational study, patients hospitalised with confirmed COVID-19 underwent gadolinium and manganese-enhanced MRI and CT coronary angiography (CTCA). They were compared with healthy and comorbidity-matched volunteers after blinded analysis.ResultsIn 52 patients (median age: 54 (IQR 51–57) years, 39 males) who recovered from COVID-19, one-third (n=15, 29%) were admitted to intensive care and a fifth (n=11, 21%) were ventilated. Twenty-three patients underwent CTCA, with one-third having underlying coronary artery disease (n=8, 35%). Compared with younger healthy volunteers (n=10), patients demonstrated reduced left (ejection fraction (EF): 57.4±11.1 (95% CI 54.0 to 60.1) versus 66.3±5 (95 CI 62.4 to 69.8)%; p=0.02) and right (EF: 51.7±9.1 (95% CI 53.9 to 60.1) vs 60.5±4.9 (95% CI 57.1 to 63.2)%; p≤0.0001) ventricular systolic function with elevated native T1 values (1225±46 (95% CI 1205 to 1240) vs 1197±30 (95% CI 1178 to 1216) ms;p=0.04) and extracellular volume fraction (ECV) (31±4 (95% CI 29.6 to 32.1) vs 24±3 (95% CI 22.4 to 26.4)%; p<0.0003) but reduced myocardial manganese uptake (6.9±0.9 (95% CI 6.5 to 7.3) vs 7.9±1.2 (95% CI 7.4 to 8.5) mL/100 g/min; p=0.01). Compared with comorbidity-matched volunteers (n=26), patients had preserved left ventricular function but reduced right ventricular systolic function (EF: 51.7±9.1 (95% CI 53.9 to 60.1) vs 59.3±4.9 (95% CI 51.0 to 66.5)%; p=0.0005) with comparable native T1 values (1225±46 (95% CI 1205 to 1240) vs 1227±51 (95% CI 1208 to 1246) ms; p=0.99), ECV (31±4 (95% CI 29.6 to 32.1) vs 29±5 (95% CI 27.0 to 31.2)%; p=0.35), presence of late gadolinium enhancement and manganese uptake. These findings remained irrespective of COVID-19 disease severity, presence of myocardial injury or ongoing symptoms.ConclusionsPatients demonstrate right but not left ventricular dysfunction. Previous reports of left ventricular myocardial abnormalities following COVID-19 may reflect pre-existing comorbidities.Trial registration numberNCT04625075.


2021 ◽  
Vol 7 (10) ◽  
pp. 810
Author(s):  
Bence Farkas ◽  
Hana Vojtková ◽  
Marek Bujdoš ◽  
Marek Kolenčík ◽  
Martin Šebesta ◽  
...  

Bioleaching of mineral phases plays a crucial role in the mobility and availability of various elements, including selenium. Therefore, the leachability of selenium associated with the surfaces of ferric and manganese oxides and oxyhydroxides, the prevailing components of natural geochemical barriers, has been studied in the presence of filamentous fungus. Both geoactive phases were exposed to selenate and subsequently to growing fungus Aspergillus niger for three weeks. This common soil fungus has shown exceptional ability to alter the distribution and mobility of selenium in the presence of both solid phases. The fungus initiated the extensive bioextraction of selenium from the surfaces of amorphous ferric oxyhydroxides, while the hausmannite (Mn3O4) was highly susceptible to biodeterioration in the presence of selenium. This resulted in specific outcomes regarding the selenium, iron, and manganese uptake by fungus and residual selenium concentrations in mineral phases as well. The adverse effects of bioleaching on fungal growth are also discussed.


2021 ◽  
Vol 7 (32) ◽  
pp. eabg3980
Author(s):  
Stephanie L. Neville ◽  
Jennie Sjöhamn ◽  
Jacinta A. Watts ◽  
Hugo MacDermott-Opeskin ◽  
Stephen J. Fairweather ◽  
...  

Metal ions are essential for all forms of life. In prokaryotes, ATP-binding cassette (ABC) permeases serve as the primary import pathway for many micronutrients including the first-row transition metal manganese. However, the structural features of ionic metal transporting ABC permeases have remained undefined. Here, we present the crystal structure of the manganese transporter PsaBC from Streptococcus pneumoniae in an open-inward conformation. The type II transporter has a tightly closed transmembrane channel due to “extracellular gating” residues that prevent water permeation or ion reflux. Below these residues, the channel contains a hitherto unreported metal coordination site, which is essential for manganese translocation. Mutagenesis of the extracellular gate perturbs manganese uptake, while coordination site mutagenesis abolishes import. These structural features are highly conserved in metal-specific ABC transporters and are represented throughout the kingdoms of life. Collectively, our results define the structure of PsaBC and reveal the features required for divalent cation transport.


Open Heart ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. e001646
Author(s):  
Nick B Spath ◽  
Trisha Singh ◽  
Giorgos Papanastasiou ◽  
Andrew Baker ◽  
Rob J Janiczek ◽  
...  

ObjectiveIn a proof-of-concept study, to quantify myocardial viability in patients with acute myocardial infarction using manganese-enhanced MRI (MEMRI), a measure of intracellular calcium handling.MethodsHealthy volunteers (n=20) and patients with ST-elevation myocardial infarction (n=20) underwent late gadolinium enhancement (LGE) using gadobutrol and MEMRI using manganese dipyridoxyl diphosphate. Patients were scanned ≤7 days after reperfusion and rescanned after 3 months. Differential manganese uptake was described using a two-compartment model.ResultsAfter manganese administration, healthy control and remote non-infarcted myocardium showed a sustained 25% reduction in T1 values (mean reductions, 288±34 and 281±12 ms). Infarcted myocardium demonstrated less T1 shortening than healthy control or remote myocardium (1157±74 vs 859±36 and 835±28 ms; both p<0.0001) with intermediate T1 values (1007±31 ms) in peri-infarct regions. Compared with LGE, MEMRI was more sensitive in detecting dysfunctional myocardium (dysfunctional fraction 40.5±11.9 vs 34.9%±13.9%; p=0.02) and tracked more closely with abnormal wall motion (r2=0.72 vs 0.55; p<0.0001). Kinetic modelling showed reduced myocardial manganese influx between remote, peri-infarct and infarct regions, enabling absolute discrimination of infarcted myocardium. After 3 months, manganese uptake increased in peri-infarct regions (16.5±3.5 vs 22.8±3.5 mL/100 g/min, p<0.0001), but not the remote (23.3±2.8 vs 23.0±3.2 mL/100 g/min, p=0.8) or infarcted (11.5±3.7 vs 14.0±1.2 mL/100 g/min, p>0.1) myocardium.ConclusionsThrough visualisation of intracellular calcium handling, MEMRI accurately differentiates infarcted, stunned and viable myocardium, and correlates with myocardial dysfunction better than LGE. MEMRI holds major promise in directly assessing myocardial viability, function and calcium handling across a range of cardiac diseases.Trial registration numbersNCT03607669; EudraCT number 2016-003782-25.


2021 ◽  
Author(s):  
Tanya Puccio ◽  
Alexander C Schultz ◽  
Claudia A Lizarraga ◽  
Ashley S Bryant ◽  
David J Culp ◽  
...  

Streptococcus sanguinis is an oral commensal and an etiological agent of infective endocarditis. Previous studies have identified the SsaACB manganese transporter as essential for endocarditis virulence; however, the significance of SsaACB in the oral environment has never been examined. Here we report that a ΔssaACB mutant of strain SK36 exhibits reduced growth and manganese uptake under acidic conditions. Further studies revealed that these deficits resulted from the decreased activity of TmpA, shown in the accompanying paper to function as a ZIP-family manganese transporter. Transcriptomic analysis of fermentor-grown cultures of SK36 WT and ΔssaACB strains identified pH-dependent changes related to carbon catabolite repression in both strains, though their magnitude was generally greater in the mutant. In strain VMC66, which possesses a MntH transporter, loss of SsaACB did not significantly alter growth or cellular manganese levels under the same conditions. Interestingly, there were only modest differences between SK36 and its ΔssaACB mutant in competition with Streptococcus mutans in vitro and in a murine oral colonization model. Our results suggest that the heterogeneity of the oral environment may provide a rationale for the variety of manganese transporters found in S. sanguinis and point to strategies for enhancing the safety of oral probiotics.


Sign in / Sign up

Export Citation Format

Share Document