lycopene production
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 20)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Sudha Shukal ◽  
Xiao Hui Lim ◽  
Congqiang Zhang ◽  
Xixian Chen

Abstract BackgroundThe recent CRISPR-Cas coupled with λ recombinase mediated genome recombineering has become a common laboratory practice to modify bacterial genomes. It requires supplying a template DNA or homolog arms for precise genome editing. However, it is often overlooked the process to generate the homolog arms which is a time-consuming, costly and inefficient step.ResultsIn this study, we first optimized CRISPR-Cas protocol in BL21 strain and successfully deleted 10 kb gene from the genome in one round of editing. To further simplify the protocol, asymmetric homolog arms as PCR fragments was used. It can be obtained by one-step PCR reaction with two primers and purified with desalting columns. Unlike conventional homolog arms that are prepared through overlapping PCR, cloning to plasmid or annealing synthetic DNA fragments, our method significantly shortened the time taken and reduced the cost to prepare the homolog arms. To test the robustness of the optimized workflow, we successfully deleted 26 / 27 genes across BL21 genome. Noteworthy, gRNA design is important for CRISPR-Cas system and a general heuristic gRNA design was proposed in the study. To apply our established protocol, we targeted 16 genes and iteratively deleted 7 genes from BL21 genome. The resulting strain increased lycopene production from ~15,000 ppm to > 40,000 ppm.ConclusionsOur work has optimized the homolog arms design for gene deletion in BL21 strains. The protocol efficiently edited BL21 strain to improve lycopene production. The same workflow is applicable to all E. coli strain which would be useful for genome rewiring to further increase metabolite production in microbial cell factories.


Author(s):  
Xian Xu ◽  
Jie Liu ◽  
Yongling Lu ◽  
Haiquan Lan ◽  
Liqing Tian ◽  
...  

2020 ◽  
Vol 11 ◽  
pp. e00140
Author(s):  
Thordis Kristjansdottir ◽  
Emanuel Y.C. Ron ◽  
Daniel Molins-Delgado ◽  
Olafur H. Fridjonsson ◽  
Charlotta Turner ◽  
...  

2020 ◽  
Vol 68 (48) ◽  
pp. 14104-14122
Author(s):  
Meijie Li ◽  
Qingqing Xia ◽  
Haibo Zhang ◽  
Rubing Zhang ◽  
Jianming Yang

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3136 ◽  
Author(s):  
Zhaobao Wang ◽  
JingXin Sun ◽  
Qun Yang ◽  
Jianming Yang

Lycopene, a potent antioxidant, has been widely used in the fields of pharmaceuticals, nutraceuticals, and cosmetics. However, the production of lycopene extracted from natural sources is far from meeting the demand. Consequently, synthetic biology and metabolic engineering have been employed to develop microbial cell factories for lycopene production. Due to the advantages of rapid growth, complete genetic background, and a reliable genetic operation technique, Escherichia coli has become the preferred host cell for microbial biochemicals production. In this review, the recent advances in biological lycopene production using engineered E. coli strains are summarized: First, modification of the endogenous MEP pathway and introduction of the heterogeneous MVA pathway for lycopene production are outlined. Second, the common challenges and strategies for lycopene biosynthesis are also presented, such as the optimization of other metabolic pathways, modulation of regulatory networks, and optimization of auxiliary carbon sources and the fermentation process. Finally, the future prospects for the improvement of lycopene biosynthesis are also discussed.


Author(s):  
Zhiming Wang ◽  
Xiangyu Li ◽  
Chao Yu ◽  
Shuhuan Lu ◽  
Shuting Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document