Microcrack Detection in Thermally Damaged Concrete Based on Broadband Frequency Coupling of Nonlinear Ultrasonic Modulation

Author(s):  
Ying Xu ◽  
Xuelei Jiang ◽  
Yue Fan ◽  
Qingyuan Wang ◽  
Heyong Zhang
2021 ◽  
Vol 40 (1) ◽  
pp. 12-22
Author(s):  
Yuetao Zhang ◽  
Tingbi Yuan ◽  
Yawei Shao ◽  
Xiao Wang

Abstract This article reports the microstructure evolution in TP347HFG austenitic steel during the aging process. The experiments were carried out at 700°C with different aging time from 500 to 3,650 h. The metallographic results show that the coherent twin and incoherent twin are existed in the original TP347HFG grains, while they gradually vanished with the increase of the aging time. After aging for 500 h, a lot of fine, dispersed particles precipitated from the matrix, but they disappeared after aging for 1,500 h. When the aging time extend to 3,650 h, the precipitates appeared apparently coarse in TP347HFG steel, which include the M23C6 and σ phase; besides, the micro-hardness of TP347HFG also changes during the aging, which was closely related to the effect of dispersion strengthening and solution strengthening. The results of the nonlinear ultrasonic measurement reveal that the β′ of TP347HFG steel was also changed with the aging time. It first increased at 0–500 h, then reduced later, and increased finally at 1,500–3,650 h. The variation of β′ in TP347HFG was influenced by a combined effect of the twin microstructure and the precipitate phase, which indicate that the nonlinear ultrasonic technique can be utilized to characterize the microstructure evolution in TP347HFG.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3243
Author(s):  
Shaojian Song ◽  
Peichen Guan ◽  
Bin Liu ◽  
Yimin Lu ◽  
HuiHwang Goh

Impedance-based stability analysis is an effective method for addressing a new type of SSO accidents that have occurred in recent years, especially those caused by the control interaction between a DFIG and the power grid. However, the existing impedance modeling of DFIGs is mostly focused on a single converter, such as the GSC or RSC, and the influence between the RSC and GSC, as well as the frequency coupling effect inside the converter are usually overlooked, reducing the accuracy of DFIG stability analysis. Hence, the entire impedance is proposed in this paper for the DFIG-based WECS, taking coupling factors into account (e.g., DC bus voltage dynamics, asymmetric current regulation in the dq frame, and PLL). Numerical calculations and HIL simulations on RT-Lab were used to validate the proposed model. The results indicate that the entire impedance model with frequency coupling is more accurate, and it is capable of accurately predicting the system’s possible resonance points.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 440
Author(s):  
Chunguang Xu ◽  
Lei He ◽  
Shiyuan Zhou ◽  
Dingguo Xiao ◽  
Pengzhi Ma

During the service or external loading of the surface coating, the damage accumulation may develop in the coating or at the interface between the substrate and the coating, but it is difficult to measure directly in the early stage, so the acoustic nonlinear parameters are used as the early damage index of the coating. In this paper, the nonlinear wave motion equation is solved by the perturbation method and the new relationship between the relative ratio of second-order parameter and third-order parameter was derived. The nonlinear ultrasonic testing system is used to detect received signals during tensile testing of for the specimen with Al2O3 coatings. It is found that when the stress is less than 260 MPa, the appearance of the coating has no obvious change, but the nonlinear coefficients measured by the experiment increase with the increase of the tensile stress. By comparing the curves of nonlinear coefficients and stress respectively, the fluctuation of curves the second-order nonlinear coefficient A2 and the relative nonlinear coefficient β′ to stress is relatively small, and close to the linear relationship with the tensile stress, which indicates that the two parameters of the specimen with Al2O3 coatings are more sensitive to the bonding conditions, and can be used as an evaluation method to track the coating damage.


2021 ◽  
Vol 11 (8) ◽  
pp. 3655
Author(s):  
Gee-Soo Lee ◽  
Chan-Jung Kim

Microcracks of depth less than 200 μm in mechanical components are difficult to detect because conventional methods such as X-ray or eddy current measurements are less sensitive to such depths. Nonetheless, an efficient microcrack detection method is required urgently in the mechanical industry because microcracks are produced frequently during cold-forming. The frequency response function (FRF) is known to be highly sensitive even to microcracks, and it can be obtained using both the input data of an impact hammer and the response data of an accelerometer. Under the assumption of an impulse force with a similar spectral impulse pattern, spectral response data alone could be used as a crack indicator because the dynamic characteristics of a microcrack may be dependent solely on these measured data. This study investigates the feasibility of microcrack detection using the response data alone through impact tests with a simple rectangular specimen. A simple rectangular specimen with a 200 μm microcrack at one face was prepared. The experimental modal analysis was conducted for the normal (uncracked) specimen and found-first bending mode about 1090 Hz at the X-Y plane (in-plane). Response accelerations were obtained in both at in-plane locations as well as X-Z plane (out-of-plane), and the crack was detected using the coherence function between a normal and a cracked specimen. A comparison of the crack inspection results obtained using the response data and the FRF data indicated the validity of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document