ON ${\omega _1}$-STRONGLY COMPACT CARDINALS

2014 ◽  
Vol 79 (01) ◽  
pp. 266-278 ◽  
Author(s):  
JOAN BAGARIA ◽  
MENACHEM MAGIDOR

Abstract An uncountable cardinal κ is called ${\omega _1}$ -strongly compact if every κ-complete ultrafilter on any set I can be extended to an ${\omega _1}$ -complete ultrafilter on I. We show that the first ${\omega _1}$ -strongly compact cardinal, ${\kappa _0}$ , cannot be a successor cardinal, and that its cofinality is at least the first measurable cardinal. We prove that the Singular Cardinal Hypothesis holds above ${\kappa _0}$ . We show that the product of Lindelöf spaces is κ-Lindelöf if and only if $\kappa \ge {\kappa _0}$ . Finally, we characterize ${\kappa _0}$ in terms of second order reflection for relational structures and we give some applications. For instance, we show that every first-countable nonmetrizable space has a nonmetrizable subspace of size less than ${\kappa _0}$ .

1991 ◽  
Vol 56 (1) ◽  
pp. 300-322 ◽  
Author(s):  
Wilfrid Hodges ◽  
Saharon Shelah

A well-known question of Feferman asks whether there is a logic which extends the logic , is ℵ0-compact and satisfies the interpolation theorem. (Cf. Makowsky [M] for background and terminology.)The same question was open when ℵ1 in is replaced by any other uncountable cardinal κ. We shall show that when κ is an uncountable strongly compact cardinal and there is a strongly compact cardinal > κ, then there is such a logic. It is impossible to prove the existence of uncountable strongly compact cardinals in ZFC. However, the logic that we describe has a simple and natural definition, together with several other pleasant properties. For example it satisfies Robinson's lemma, PPP (pair preservation property, viz. the theory of the sum of two models is the sum of their theories), versions of the elementary chain lemma for chains of length < λ, and isomorphism of (suitable) ultralimits.This logic is described in §2 below; we call it 1. It is not a new logic—it was introduced in [Sh, Part II, §3] as an example of a logic which has the amalgamation and joint embedding properties. See the transparent presentation in [M]. But we shall repeat all the definitions. In [HS] we presented a logic with some of the same properties as 1, also based on a strongly compact cardinal λ; but unlike 1, it was not a sublogic of λ,λ.


1989 ◽  
Vol 54 (1) ◽  
pp. 122-137
Author(s):  
Rami Grossberg

AbstractLet L(Q) be first order logic with Keisler's quantifier, in the λ+ interpretation (= the satisfaction is defined as follows: M ⊨ (Qx)φ(x) means there are λ+ many elements in M satisfying the formula φ(x)).Theorem 1. Let λ be a singular cardinal; assume □λ and GCH. If T is a complete theory in L(Q) of cardinality at most λ, and p is an L(Q) 1-type so that T strongly omits p( = p has no support, to be defined in §1), then T has a model of cardinality λ+ in the λ+ interpretation which omits p.Theorem 2. Let λ be a singular cardinal, and let T be a complete first order theory of cardinality λ at most. Assume □λ and GCH. If Γ is a smallness notion then T has a model of cardinality λ+ such that a formula φ(x) is realized by λ+ elements of M iff φ(x) is not Γ-small. The theorem is proved also when λ is regular assuming λ = λ<λ. It is new when λ is singular or when ∣T∣ = λ is regular.Theorem 3. Let λ be singular. If Con(ZFC + GCH + ∃κ) [κ is a strongly compact cardinal]), then the following is consistent: ZFC + GCH + the conclusions of all above theorems are false.


2014 ◽  
Vol 79 (4) ◽  
pp. 1092-1119 ◽  
Author(s):  
WILL BONEY

AbstractWe show that Shelah’s Eventual Categoricity Conjecture for successors follows from the existence of class many strongly compact cardinals. This is the first time the consistency of this conjecture has been proven. We do so by showing that every AEC withLS(K) below a strongly compact cardinalκis <κ-tame and applying the categoricity transfer of Grossberg and VanDieren [11]. These techniques also apply to measurable and weakly compact cardinals and we prove similar tameness results under those hypotheses. We isolate a dual property to tameness, calledtype shortness, and show that it follows similarly from large cardinals.


1979 ◽  
Vol 44 (4) ◽  
pp. 563-565
Author(s):  
Carl F. Morgenstern

It is well known that the first strongly inaccessible cardinal is strictly less than the first weakly compact cardinal which in turn is strictly less than the first Ramsey cardinal, etc. However, once one passes the first measurable cardinal the inequalities are no longer strict. Magidor [3] has shown that the first strongly compact cardinal may be equal to the first measurable cardinal or equal to the first super-compact cardinal (the first supercompact cardinal is strictly larger than the first measurable cardinal). In this note we will indicate how Magidor's methods can be used to show that it is undecidable whether one cardinal (the first strongly compact) is greater than or less than another large cardinal (the first huge cardinal). We assume that the reader is familiar with the ultrapower construction of Scott, as presented in Drake [1] or Kanamori, Reinhardt and Solovay [2].Definition. A cardinal κ is huge (or 1-huge) if there is an elementary embedding j of the universe V into a transitive class M such that M contains the ordinals, is closed under j(κ) sequences, j(κ) > κ and j ↾ Rκ = id. Let κ denote the first huge cardinal, and let λ = j(κ).One can see from easy reflection arguments that κ and λ are inaccessible in V and, in fact, that κ is measurable in V.


2008 ◽  
Vol 14 (1) ◽  
pp. 99-113
Author(s):  
Matteo Viale

The purpose of this communication is to present some recent advances on the consequences that forcing axioms and large cardinals have on the combinatorics of singular cardinals. I will introduce a few examples of problems in singular cardinal combinatorics which can be fruitfully attacked using ideas and techniques coming from the theory of forcing axioms and then translate the results so obtained in suitable large cardinals properties.The first example I will treat is the proof that the proper forcing axiom PFA implies the singular cardinal hypothesis SCH, this will easily lead to a new proof of Solovay's theorem that SCH holds above a strongly compact cardinal. I will also outline how some of the ideas involved in these proofs can be used as means to evaluate the “saturation” properties of models of strong forcing axioms like MM or PFA.The second example aims to show that the transfer principle (ℵω+1, ℵω) ↠ (ℵ2, ℵ1) fails assuming Martin's Maximum MM. Also in this case the result can be translated in a large cardinal property, however this requires a familiarity with a rather large fragment of Shelah's pcf-theory.Only sketchy arguments will be given, the reader is referred to the forthcoming [25] and [38] for a thorough analysis of these problems and for detailed proofs.


1998 ◽  
Vol 63 (4) ◽  
pp. 1404-1412 ◽  
Author(s):  
Arthur W. Apter ◽  
Moti Gitik

AbstractWe show the consistency, relative to a supercompact cardinal, of the least measurable cardinal being both strongly compact and fully Laver indestructible. We also show the consistency, relative to a supercompact cardinal, of the least strongly compact cardinal being somewhat supercompact yet not completely supercompact and having both its strong compactness and degree of supercompactness fully Laver indestructible.


2000 ◽  
Vol 6 (1) ◽  
pp. 86-89
Author(s):  
James W. Cummings

1985 ◽  
Vol 50 (4) ◽  
pp. 874-880
Author(s):  
Yoshihiro Abe

This paper consists of two parts. In §1 we mention the first strongly compact cardinal. Magidor proved in [6] that it can be the first measurable and it can be also the first supercompact. In [2], Apter proved that Con(ZFC + there is a supercompact limit of supercompact cardinals) implies Con(ZFC + the first strongly compact cardinal κ is ϕ(κ)-supercompact + no α < κ is ϕ(α)-supercompact) for a formula ϕ which satisfies certain conditions.We shall get almost the same conclusion as Apter's theorem assuming only one supercompact cardinal. Our notion of forcing is the same as in [2] and a trick makes it possible.In §2 we study a kind of fine ultrafilter on Pκλ investigated by Menas in [7], where κ is a measurable limit of strongly compact cardinals. He showed that such an ultrafilter is not normal in some case (Theorems 2.21 and 2.22 in [7]). We shall show that it is not normal in any case (even if κ is supercompact). We also prove that it is weakly normal in some case.We work in ZFC and much of our notation is standard. But we mention the following: the letters α,β,γ… denote ordinals, whereas κ,λ,μ,… are reserved for cardinals. R(α) is the collection of sets rank <α. φM denotes the realization of a formula φ to a class M. Except when it is necessary, we drop “M”. For example, M ⊩ “κ is φ(κ)-supercompact” means “κ is φM(κ)-supercompact in M”. If x is a set, |x| is its cardinality, Px is its power set, and . If also x ⊆ OR, denotes its order type in the natural ordering. The identity function with the domain appropriate to the context is denoted by id. For the notation concerning ultrapowers and elementary embeddings, see [11]. When we talk about forcing, “⊩” will mean “weakly forces” and “p < q” means “p is stronger than q”.


2014 ◽  
Vol 79 (01) ◽  
pp. 103-134 ◽  
Author(s):  
M. MALLIARIS ◽  
S. SHELAH

Abstract Our results in this paper increase the model-theoretic precision of a widely used method for building ultrafilters, and so advance the general problem of constructing ultrafilters whose ultrapowers have a precise degree of saturation. We begin by showing that any flexible regular ultrafilter makes the product of an unbounded sequence of finite cardinals large, thus saturating any stable theory. We then prove directly that a “bottleneck” in the inductive construction of a regular ultrafilter on λ (i.e., a point after which all antichains of ${\cal P}\left( \lambda \right)/{\cal D}$ have cardinality less than λ) essentially prevents any subsequent ultrafilter from being flexible, thus from saturating any nonlow theory. The constructions are as follows. First, we construct a regular filter ${\cal D}$ on λ so that any ultrafilter extending ${\cal D}$ fails to ${\lambda ^ + }$ -saturate ultrapowers of the random graph, thus of any unstable theory. The proof constructs the omitted random graph type directly. Second, assuming existence of a measurable cardinal κ, we construct a regular ultrafilter on $\lambda &gt; \kappa$ which is λ-flexible but not ${\kappa ^{ + + }}$ -good, improving our previous answer to a question raised in Dow (1985). Third, assuming a weakly compact cardinal κ, we construct an ultrafilter to show that ${\rm{lcf}}\left( {{\aleph _0}} \right)$ may be small while all symmetric cuts of cofinality κ are realized. Thus certain families of precuts may be realized while still failing to saturate any unstable theory.


1992 ◽  
Vol 57 (3) ◽  
pp. 970-974 ◽  
Author(s):  
Yo Matsubara

The large cardinal-like properties of saturated ideals have been investigated by various authors, including Foreman [F], and Jech and Prikry [JP], among others. One of the most interesting consequences of a strongly compact cardinal is the following theorem of Solovay [So2]: if a strongly compact cardinal exists then the singular cardinal hypothesis holds above it. In this paper we discuss the question of relating the existence of saturated ideals and the singular cardinal hypothesis. We will show that the existence of “strongly” saturated ideals implies the singular cardinal hypothesis. As a biproduct we will present a proof of the above mentioned theorem of Solovay using generic ultrapowers. See Jech and Prikry [JP] for a nice exposition of generic ultrapowers. We owe a lot to the work of Foreman [F]. We would like to express our gratitude to Noa Goldring for many helpful comments and discussions.Throughout this paper we assume that κ is a strongly inaccessible cardinal and λ is a cardinal >κ. By an ideal on κλ we mean a κ-complete fine ideal on Pκλ. For I an ideal on κλ let PI denote the poset of I-positive subsets of κλ.Definition. Let I be an ideal on κλ. We say that I is a bounding ideal if 1 ⊩-PI “δ(δ is regular cardinal ”.We can show that if a normal ideal is “strongly” saturated then it is bounding.Theorem 1. If 1 is an η-saturated normal ideal onκλ, where η is a cardinal <λsuch that there are fewer thanκmany cardinals betweenκand η (i.e. η < κ+κ), then I is bounding.Proof. Let I be such an ideal on κλ. By the work of Foreman [F] and others, we know that every λ+-saturated normal ideal is precipitous. Suppose G is a generic filter for our PI. Let j: V → M be the corresponding generic elementary embedding. By a theorem of Foreman [F, Lemma 10], we know that Mλ ⊂ M in V[G]. By η-saturation, cofinalities ≥η are preserved; that is, if cfvα ≥ η, then cfvα = cfv[G]α. From j ↾ Vκ being the identity on Vκ and M being λ-closed in V[G], we conclude that cofinalities <κ are preserved. Therefore if cfvα ≠ cfv[G]α then κ ≤ cfvα < η.


Sign in / Sign up

Export Citation Format

Share Document