scholarly journals Effect of Cold Rolling on Cluster(1) Dissolvability during Artificial Aging and Formability during Natural Aging in Al-0.6Mg-1.0Si-0.5Cu Alloy

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Naoto Kirekawa ◽  
Kaisei Saito ◽  
Minho O ◽  
Equo Kobayashi

Natural aging after solution treatment has a negative effect on the precipitation strengthening of Al–Mg–Si alloys since Cluster(1) formed at a room temperature cannot be dissolved or transformed into precipitates during artificial aging at 170 °C. In this study, cold rolling is focused on as an alternative solution to pre-aging, which is a conventional method to prevent Cluster(1) formation. It is known that excess vacancies are necessary for cluster formation. Cold rolling suppresses cluster formation because excess vacancies disappear at dislocations introduced by cold rolling. In addition, it is expected that cold rolling accelerates the precipitation behavior because the diffusion of solute atoms is promoted by introduced lattice defects. The transition of Cluster(1) was evaluated by Micro Vickers hardness tests, tensile tests, electrical conductivity measurements and differential scanning calorimetry analyses. Results showed the negative effect of natural aging was almost suppressed in 10% cold-rolled samples and completely suppressed in 30% cold-rolled samples since Cluster(1) dissolved during artificial aging at 170 °C due to lowering of the temperature of Cluster(1) dissolution by cold rolling. It was found that the precipitation in cold-rolled samples was accelerated since the hardness peak of 10% cold-rolled samples appeared earlier than T6 and pre-aged samples.

2014 ◽  
Vol 893 ◽  
pp. 375-380 ◽  
Author(s):  
Zakaria Boumerzoug ◽  
Ines Hamdi

In this study, the effect of the long natural aging on the precipitation sequence of Al-Mg-Si alloy was investigated by differential scanning calorimetry and hardness examinations. This investigation revealed that the natural aging has a negative effect on the artificial aging. The reason behind the influence of natural aging on precipitation behavior of the Al-Mg-Si alloy is assumed to be the formation of clusters and G.P. zone during natural aging. The hardening mechanism during artificial aging was explained.


2019 ◽  
Vol 952 ◽  
pp. 82-91
Author(s):  
Martin Fujda ◽  
Miloš Matvija ◽  
Peter Horňak

In order to study the pre-straining and natural aging effects on the age-hardening response of EN AW 6082 and EN AW 6023 aluminium alloys during artificial aging at 170°C, the pre-straining by 5% was performed immediately after solution treatment of alloys at 550°C and subsequent quenching. The age-hardening response during artificial aging applied after various natural aging time (from 0.1 to 5 000 hours) was investigated using Vickers microhardness measurements and transmission electron microscopy characterization. It was found that pre-straining of quenched alloys state caused a dislocation density increasing in solid solution, which resulted in an immediate microhardness increase of alloys. During the subsequent natural aging of EN AW 6082 alloy, its microhardness increased right after alloy quenching and pre-straining, but only to the values obtained for the unstrained alloy state. On the contrary, the hardness of pre-straining EN AW 6023 alloy that is alloyed by Sn did not increase either after 10 hours of natural aging. This phenomenon is attributed to the effect of Sn on suppression of the strengthening clusters formation. The hardness of alloys increased greatly during artificial aging after pre-straining and natural aging due to accelerating the formation of coherent β″-phase particles. The negative effect of natural aging on the maximum age-hardening response obtained during alloys artificial aging had been observed for most of the pre-strained and naturally aged alloys states, with exception of EN AW 6023 alloy states that were pre-strained and shortly naturally aged (up to 100 hours).


2015 ◽  
Vol 828-829 ◽  
pp. 468-473 ◽  
Author(s):  
Thomas Weisz ◽  
Piotr Warczok ◽  
Thomas Ebner ◽  
Ahmad Falahati ◽  
Ernst Kozeschnik

Natural aging during storage of Al-Mg-Si alloys at room temperature can significantly reduce the maximum strengthening potential (T6) during artificial aging and, therefore, is a key topic in aluminium research and industry. Many different strategies to understand and reduce the negative effect of natural aging have been investigated during the last decades, including analysis of different thermal pre-treatments and considering the effect of different microalloying elements. From these investigations, the vacancy evolution and the formation of clusters containing Mg and Si were found to be the governing aging mechanisms behind natural aging. In this work, we present a model to simulate and predict the behavior of these alloys when subjected to room temperature aging after solutionizing and demonstrate the effects of different thermal routes and chemical composition variations. In the implemented model, the evolution of excess quenched-in vacancies and the effect of solute vacancy traps are considered. Special emphasis is placed on co-cluster formation and its contribution to strengthening. The thermokinetic software MatCalc is used for the simulations and the results of the simulations are validated by experimental investigation.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 385
Author(s):  
Lisa Winter ◽  
Kristin Hockauf ◽  
Mario Scholze ◽  
Ralph Jörg Hellmig ◽  
Thomas Lampke

In the present study, the influence of the initial heat-treatment conditions on the artificial aging behavior after conventional linear extrusion at room temperature was investigated for the precipitation hardening of a 6056 aluminum alloy. A solution-annealed condition was systematically compared to naturally-aged and pre-aged conditions. Differential scanning calorimetry was used for analyzing the precipitation sequence and its dependence on the initial heat treatment. The natural aging behavior prior to extrusion and the artificial aging behavior after extrusion were determined by microhardness measurements as a function of the aging time. Furthermore, the microstructure, dependent on the induced strain, was investigated using optical microscopy and transmission electron microscopy. As a result of pre-aging, following a solid-solution treatment, the formation of stable room-temperature clusters was suppressed and natural aging was inhibited. The artificial aging response after extrusion was significantly enhanced by pre-aging, and the achieved hardness and strength were significantly higher when compared with the equally processed solution-annealed or naturally-aged conditions.


2020 ◽  
Vol 326 ◽  
pp. 04007
Author(s):  
Magali Brunet ◽  
Benoit Malard ◽  
Nicolas Ratel-Ramond ◽  
Christophe Deshayes ◽  
Bénédicte Warot-Fonrose ◽  
...  

The understanding of long-term aging of aeronautical materials, in particular aluminium alloys used in the fuselage and structure of aircraft is of extreme importance for airline fleets. In this work, a plate from an old aircraft (Breguet) was retrieved and studied in terms of microstructure and mechanical properties. A comparison was made between this naturally-aged alloy and a modern alloy on which different artificial aging conditions were applied. The old alloy exhibits a precipitation of θ-Al2Cu at grain boundaries and of Ω-Al2Cu on dispersoids. This non-expected nanostructure for an alloy in T4 state was attributed to the heat that the plate experienced during the aircraft cycles. However, it is shown that this aging is reversible (after a solution treatment). Moreover, the very long time of outdoors exposure seems to have caused intergranular corrosion causing the early failure during tensile tests on some of the specimens. The artificial aging (low temperature, 100°C for up to 10,000h) applied on the modern 2017A alloy did not allow to reproduce the nanostructure of the old plate, meaning that isothermal conditions for artificial aging might not be appropriate in this case.


2019 ◽  
Vol 22 ◽  
pp. 55-64
Author(s):  
Martin Vlach ◽  
Veronika Kodetová ◽  
Hana Kudrnová ◽  
Michal Leibner ◽  
Marián Vlček ◽  
...  

The effect of cold-rolling on mechanical, thermal, and electrical properties as well as microstructure behaviour of the Al-2.93wt.%Mg-0.34wt.%Mn-0.33wt.%Si-0.22wt.%Fe-0.19wt.%Cr-0.24wt.%Sc-0.06wt.%Zr was studied. The material was investigated during step-by-step isochronal annealing in a temperature range from room temperature up to 540 °C and during isothermal annealing at 200, 450 and 550 °C. Precipitation reactions were studied by electrical resistometry, conductivity, (micro) hardness measurements and differential scanning calorimetry. The hardening effect appears due to the additional precipitation of the Al3Sc and/or Al3(Sc,Zr) particles. The distinct changes in residual resistivity ratio above ~ 330 °C are probably caused by precipitation of the Mn (,Fe,Cr)-containing particles. This precipitation process is highly influenced by cold rolling but it has a negligible effect on hardness. The apparent activation energy values for additional formation of the Al3Sc and/or Al3(Sc,Zr) particles were determined. The kinetics of the Al3(Sc,Zr)-phase precipitation seems to be independent of Mn-and Mg-addition in the studied alloys. A partial recrystallization of the cold-rolled alloy was registered by electron backscatter diffraction after annealing at 550 °C. The initial difference in microhardness introduced by cold rolling is almost removed after annealing at 550 °C/30 min.


2019 ◽  
Vol 9 (4) ◽  
pp. 4500-4503
Author(s):  
M. I. Mohamed

The effects of precipitated phases during aging treatment on the properties of the Cu-Be alloy have been extensively studied. In this study, the effect of cold rolling on the precipitated phases of the Cu-Be alloy compared with non-deformed alloy during isothermal and low heating rate aging of 20C/min have been investigated. Hardness changes, differential scanning calorimetry (DSC), dilatation analysis, and transmission electron microscopy (TEM) were used in this study. Hardening and contraction were strongly increased at an early aging time for the cold rolled Cu-Be alloy. In addition, the DSC curves revealed an exothermic peak from the γ΄΄ phase. This peak increased and shifted to lower aging time by increasing the cold rolling reduction. In addition, the hardness remarkably increased at lower aging temperatures for the cold rolled specimens. The contraction from the dilatation curves and the exothermic peaks shifted to lower aging temperatures in cold rolled specimens. The hardening of Cu-Be alloy is believed to be from the γ΄ phase, and the contraction and the first exothermic peak in DSC curves from γ΄΄ phase. TEM observations are in a good agreement with the above explanation and strongly revealed that γ΄΄ and γ΄ phases were highly accelerated by the effect of cold rolling


2021 ◽  
Vol 1016 ◽  
pp. 1368-1373
Author(s):  
Xiao Yun Song ◽  
Wen Jun Ye ◽  
Song Xiao Hui

The microstructures and shape memory behaviors of Ti-18Nb-6Zr (at.%) alloy subjected to different heat treatments were investigated through optical microscopy (OM), X-ray diffraction (XRD), Transmission electron microscopy (TEM) and tensile tests. Recrystallization occurs in cold-rolled Ti-18Nb-6Zr alloy after solution treatment at 600~800 °C. The cooling rate after solution treatment at 800°C shows a dramatic effect on the microstructure of the alloy. The microstructures for the water quenching (WQ) and oil quenching (OQ) specimens are composed of single α'' martensite phase, while for the air cooling (AC) specimen, the microstructure consists of predominant β phase and a small amount of fine athermal ω phase. During tensile deformation, two-stage yielding is observed in the alloy subjected to 800°C/0.5h/WQ heat treatment. The stress for martensite variants reorientation and the yield stress for plastic deformation are 310MPa and 455MPa, respectievely, and the maximum shape memory strain of 3.1% is obtained with pre-strain of 6%.


2014 ◽  
Vol 1760 ◽  
Author(s):  
Akira Umise ◽  
Masaki Tahara ◽  
Kenji Goto ◽  
Tomonari Inamura ◽  
Hideki Hosoda

ABSTRACTIn order to improve shape memory properties of Au-Cu-Al based shape memory alloys, the possibility to utilize thermo-mechanical treatment was investigated in this study, and effects of heat-treatment temperature on microstructure, martensitic transformation and mechanical properties of cold-rolled Au-30Cu-18Al-2Fe (AuCuAlFe) alloy were clarified by X-ray diffraction analysis (XRD, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and tensile tests at room temperature (RT). Here, Fe addition to AuCuAl improves ductility. Cold rolling with the thickness reduction of 30% was successfully carried out in AuCuAlFe at RT. An exothermic heat was observed in DSC at temperature from 402K, suggesting that recovery started at 402K. Besides, the transformation temperature hysteresis increased by the cold-rolling. The alloy was completely recrystallized after the heat treatment at 573K for 3.6ks. Tensile tests revealed that the yield stress was raised by cold rolling and largely by the subsequent heat treatment at 433K, which corresponded to the recovery start temperature by DSC. The yield stress decreased with increasing heat treatment temperature over 453K, probably due to recrystallization. AuCuAlFe cold-rolled and subsequent heat-treated at 573K exhibited the lowest yield stress as well as stress-plateau region, indicating that the thermo-mechanical treatment is effective to improve shape memory properties of Au-Cu-Al based alloys.


2014 ◽  
Vol 794-796 ◽  
pp. 483-488 ◽  
Author(s):  
Katsushi Matsumoto ◽  
Yasuhiro Aruga ◽  
Hidemasa Tsuneishi ◽  
Hikaru Iwai ◽  
Masataka Mizuno ◽  
...  

The serrated flow phenomena in Al-Mg alloys with and without Zn were investigated after aging on several conditions, focusing on the role of precipitates. Al-6mass%Mg-0~3mass%Zn alloys were solution treated at 753~803K, quenched, and then aged at room temperature. Further artificial aging at 323~573K for 86.4ks was performed for some of them after natural aging for 2.6Ms. The serrated flow behavior was evaluated by tensile test. Microstructure was characterized by differential scanning calorimetry, transmission electron microscopy, atom probe tomography, and positron annihilation lifetime spectroscopy. The increase in the amount of Zn addition and the natural aging time lead to a delayed onset of serrated flow. The artificial aging at higher temperatures after natural aging, on the other hand, decreases the onset strain. A large number of small coherent Zn-Mg clusters are formed during natural aging in the Al-Mg-Zn alloys, which are transformed to the larger incoherent meta-stable precipitates during subsequent artificial aging. These results suggest that the mechanism of interfering with serrated flow is related to the vacancy trapping effect, which is enhanced by the coherent clusters.


Sign in / Sign up

Export Citation Format

Share Document