Influences of initial microstructures on martensitic transformation and textures during cold rolling and tensile mechanical properties in high manganese TRIP steel

2022 ◽  
Vol 829 ◽  
pp. 142147
Author(s):  
Dan-dan Ma ◽  
Ping Yang ◽  
Xin-fu Gu ◽  
Feng-e Cui
2013 ◽  
Vol 535-536 ◽  
pp. 445-448 ◽  
Author(s):  
Daiki Inoshita ◽  
Shiro Yamanaka ◽  
Takeshi Iwamoto

For automotive industries, weight of an automobile can be reduced if TRIP steel which has excellent mechanical properties dominated by strain-induced martensitic transformation (SIMT) can be applied to shock absorption members. However, strain rate sensitivity of TRIP steels has not been fully understood because a relationship between a strain rate and an amount of martensite produced by SIMT is still unclear. In previous studies, volume resistivity and impedance have been measured to obtain information on the amount of produced martensite, however, these studies have not been succeeded to clarify the relationship. Here, by focusing a property that martensite shows ferromagnetism, it is attempted that impedance of TRIP steel is measured at various strain rates during the deformation by using prototype coil and circuits.


2014 ◽  
Vol 626 ◽  
pp. 432-437
Author(s):  
Yutaro Moriyama ◽  
Daiki Inoshita ◽  
Takeshi Iwamoto

If TRIP steel with excellent mechanical properties dominated by strain induced martensitic transformation (SIMT) can be applied to a shock absorber in automobiles, it becomes possible to reduce a weight of the automobiles by decreasing the thickness of their components. In order to improve its reliability by clarification of the mechanical properties, it is necessary to evaluate continuous evolution of martensite during deformation in TRIP steel. In the previous studies, volume resistivity and impedance have been measured during deformation. However, these studies have not been succeeded for the evaluation of martensite with higher precision. Here, because of focusing on a characteristic which martensite indicates ferromagnetism, the evolution of martensite is evaluated by measuring relative magnetic permeability in TRIP steel during deformation at various strain rate.


2020 ◽  
Vol 52 (1) ◽  
pp. 26-33
Author(s):  
Gurumayum Robert Kenedy ◽  
Yi-Jyun Lin ◽  
Wei-Chun Cheng

AbstractThe Fe-Mn-Al steels claim a low density, and some fall into the category of transformation-induced plasticity (TRIP) steel. In Fe-Mn-Al TRIP steel development, phase transformations play an important role. Herein, the martensitic transformation of an Fe-16.7 Mn-3.4 Al ternary alloy (wt pct) was experimentally discovered, whose equilibrium phases are a single phase of austenite at 1373 K and dual phases of ferrite and austenite at low temperature. Ferritic lath martensite forms in the prior austenite grains after cooling from 1373 K under various cooling rates via quenching, air cooling, and furnace cooling. The formation mechanism of the ferritic lath martensite is different from that of traditional ferritic lath martensite in steel and quite similar to that in maraging steel. A slight strain energy coupled with a small temperature gradient can lead to the formation of ferritic lath martensite in the Fe-Mn-Al alloy after cooling from high temperature. It is also found that micro-twins exist in the ferritic lath martensite.


Vacuum ◽  
2021 ◽  
Vol 184 ◽  
pp. 109894 ◽  
Author(s):  
Xiaoyang Yi ◽  
Haizhen Wang ◽  
Kuishan Sun ◽  
Guijuan Shen ◽  
Xianglong Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document