levitation performance
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 16)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 7 (4) ◽  
pp. 14-32
Author(s):  
Sergey G. Akulitzky ◽  
Victor M. Amoskov ◽  
Darya N. Arslanova ◽  
Andrei A. Belov ◽  
N. Vasiliev Vyacheslav ◽  
...  

Aim: To test the levitation performance of a hybrid EMS prototype. Materials and Methods: a levitation test setup with a 18 mm thick steel rail was constructed on a basis of the certified test bench 1958U-10-1 for measurement in the range up to 100 kN. The attractive force was investigated by varying the air gap size and coil current. Measured data were compared with parametric simulations. Results: Experimental and numerical results agreed with the accuracy required for practical application. Conclusions: A prototype of hybrid EMS (HEMS) for maglev transport has been designed, built, and tested at JSC NIIEFA. The HEMS concept has an advantage of reduced power loss and low stray field. The bench testing has proved good levitation performance and low power consumption of the proposed design. The measured data were used to check design solutions and verify 3D numerical models of the magnets. The comparison demonstrated a good match between measurements and simulations.


2021 ◽  
Vol 11 (13) ◽  
pp. 5898
Author(s):  
Yifeng Song ◽  
Guobin Lin ◽  
Fei Ni ◽  
Junqi Xu ◽  
Chen Chen

The levitation stability of maglev trains is determined by the interaction of vehicle-bridge dynamic characteristics. The state change of vehicle and track beam will affect the dynamic performance of maglev trains. In order to study the levitation characteristics of maglev trains, a coupled vehicle-bridge dynamic model based on an elastic beam was established to study the influence of beam stiffness and vehicle load on the dynamic performance of the maglev system. In the form of numerical simulation, the time-domain characteristics of key characteristic variables, such as levitation gap and vertical deflection of track beam, under different working conditions of stiffness and load were analyzed. The simulation shows that the levitation system can smoothly converge to the stable value under each working condition, which indicates the rationality of the field test. Based on the Shanghai Lingang medium-and-low-speed maglev test line, the maglev test was carried out, and the time-domain and frequency-domain characteristics of the above key variables were analyzed based on the measured data. The results show that the fluctuation of the levitation gap was affected by load and stiffness, and the law was consistent with the simulation results. The increase in load or the decrease in beam stiffness would lead to an increase in vertical deflection and vibration of the track beam. However, the train could still maintain good levitation performance under the above extreme conditions, which verified the reliability of the levitation system and the correctness of the simulation model. The conclusion of this paper can provide a reference for the design of the levitation system and track line of medium-and-low-speed maglev train.


2021 ◽  
Vol 11 (8) ◽  
pp. 3491
Author(s):  
Dokyu Kim ◽  
SeungJoon Baik ◽  
Jeong Ik Lee

A supercritical CO2 (S-CO2)-cooled Brayton cycle is under development for distributed power applications for remote regions. In order to successfully develop it, issues of controlling shaft levitation with bearings have to be solved. From several studies, magnetic bearings have been suggested for reliable levitation performance with reduced cost and complexity. However, several studies on magnetic bearing show that instability issues under high-pressure fluid and high-speed operating conditions may exist. The purpose of this research is to provide background for understanding the instability of magnetic bearings under S-CO2 conditions and propose functional requirements of the magnetic bearing. Thus, the rotating shaft with magnetic bearings operating under high pressure fluid was first analyzed. To test the theory, a magnetic bearing test rig was constructed. By comparing experimental data to the analysis results, the analysis results were verified. Therefore, the analysis results can be used for predicting instability in the future and can contribute to the development of better magnetic bearing controllers.


Sign in / Sign up

Export Citation Format

Share Document