scholarly journals Study on Coupled Vertical Vehicle-Bridge Dynamic Performance of Medium and Low-Speed Maglev Train

2021 ◽  
Vol 11 (13) ◽  
pp. 5898
Author(s):  
Yifeng Song ◽  
Guobin Lin ◽  
Fei Ni ◽  
Junqi Xu ◽  
Chen Chen

The levitation stability of maglev trains is determined by the interaction of vehicle-bridge dynamic characteristics. The state change of vehicle and track beam will affect the dynamic performance of maglev trains. In order to study the levitation characteristics of maglev trains, a coupled vehicle-bridge dynamic model based on an elastic beam was established to study the influence of beam stiffness and vehicle load on the dynamic performance of the maglev system. In the form of numerical simulation, the time-domain characteristics of key characteristic variables, such as levitation gap and vertical deflection of track beam, under different working conditions of stiffness and load were analyzed. The simulation shows that the levitation system can smoothly converge to the stable value under each working condition, which indicates the rationality of the field test. Based on the Shanghai Lingang medium-and-low-speed maglev test line, the maglev test was carried out, and the time-domain and frequency-domain characteristics of the above key variables were analyzed based on the measured data. The results show that the fluctuation of the levitation gap was affected by load and stiffness, and the law was consistent with the simulation results. The increase in load or the decrease in beam stiffness would lead to an increase in vertical deflection and vibration of the track beam. However, the train could still maintain good levitation performance under the above extreme conditions, which verified the reliability of the levitation system and the correctness of the simulation model. The conclusion of this paper can provide a reference for the design of the levitation system and track line of medium-and-low-speed maglev train.

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Junxiong Hu ◽  
Weihua Ma ◽  
Xiaohao Chen ◽  
Shihui Luo

This paper analyzed the mechanical characteristics of single electromagnet system and elastic track beam of EMS maglev train and established a five-dimensional dynamics model of single electromagnet-track beam coupled system with classical PD control strategy adopted for its levitation system. Then, based on the Hurwitz criterion and the high-dimensional Hopf bifurcation theory, the stability of the coupled system is analyzed; the existence of the Hopf bifurcation is discussed and the bifurcation direction and the stability of the periodic solution are determined with levitation control feedback coefficient kp as the bifurcation parameter; and numerical simulation is conducted to verify the validity of the theoretical analysis results. The results show that the Hurwitz algebra criterion can directly determine the eigenvalues and symbols of the dynamics system to facilitate the analysis on the stability of the system and the Hopf bifurcation without the necessity of calculating the specific eigenvalues; supercritical Hopf bifurcation will occur under the given parameters, that is, when kp<kp0, the real-time system is asymptotically stable, yet Hopf bifurcation occurs as kp increases gradually beyond kp0, with the stability of the system lost and a stable limit cycle branched.


1992 ◽  
Vol 2 (4) ◽  
pp. 615-620
Author(s):  
G. W. Series
Keyword(s):  

2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


Sign in / Sign up

Export Citation Format

Share Document