scholarly journals Electrospinning and Catalytic Properties of Cyclodextrin Functionalized Polyoxymethylene (POM) Nanofibers Supported by Silver Nanoparticles

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
C. Q. Zhang ◽  
Y. M. Wang ◽  
S. Z. Li ◽  
X. D. Feng ◽  
L. H. Liu ◽  
...  

A series of novel composite microfibers composed of β-cyclodextrin (β-CDs) functionalized POM (polyoxymethylene) were prepared using electrospining technology with a mixture of hexafluoroisopropanol (HFIP) and N,N-dimethylformamide (DMF) as solvent. The concentration of β-CDs with respect to the POM was varied from 0 to 50 wt.%. The effect of β-CDs content on the morphology of POM/β-CD composite microfiber was investigated. The results showed that the introduction of β-CDs reduced the surface roughness and porosity of the microfibers, and the morphology of the fibers was changed. The increase of β-CDs content from 10% to 50% has led to increased average diameter of POM/β-CD composite fiber from 2.1 μm to 6.4 μm. The mechanical properties of the blend fiber mats were further investigated. In addition, silver nanoparticles were introduced to the POM/β-CD composite microfiber matrices during electrospinning. The POM/β-CD composite fiber allows CDs to form host–guest complexes with various small molecules and macromolecules. The TEM, SEM, XRD, and XPS were utilized to characterize the prepared samples. The data suggest that Ag nanoparticles were homogeneously distributed within the POM/β-CD fibers, and no aggregation was observed. The catalytic activity of Ag nanoparticles was tracked by ultraviolet-visible (UV-vis) spectroscopy which showed excellent catalytic degradation performance of organic dyes in the presence of NaBH4. The Ag/POM/β-CD mats are promising for use in waste treatment, molecular recognition, catalysis, and so on.

2013 ◽  
Vol 756 ◽  
pp. 99-105
Author(s):  
Rajasingam Ratnamalar ◽  
Mustapha Mariatti ◽  
Zulkifli Ahmad ◽  
Sharif Zein Sharif Hussein

This work reports a simple chemical reduction route for the preparation of uniformed Ag nanoparticles whereby a fine control over the sizes of the Ag nanoparticles was studied by varying the concentrations of the reducing agents used. In characterization, UV-Vis spectroscopy showed the changes in optical properties of the Ag nanoparticles with regards to their sizes, where as the XRD patterns of the synthesized Ag nanoparticles confirmed the distinct peaks approximately at 2θ = 38.1°, 44.3°, 64.4°, 77.4°, and 81.5 representing Bragg’s reflections from (111), (200), (220), (311), and (222) planes of the face centred cubic lattice phase. This route of synthesis is feasible to produce Ag nanoparticles with diameters in the range of 30-45 nm.


2012 ◽  
Vol 585 ◽  
pp. 134-138 ◽  
Author(s):  
Alisha Goyal ◽  
Jyoti Rozra ◽  
Isha Saini ◽  
Pawan K. Sharma ◽  
Annu Sharma

Nanocomposite films of Poly (methylmethacrylate) with different concentration of silver nanoparticles were prepared by ex-situ method. Firstly, silver nanoparticles were obtained by reducing the aqueous solution of silver nitrate with sodium borohydride then Ag-PMMA films were prepared by mixing colloidal solution of silver nanoparticles with solution of polymer. Thin solid films were structurally characterized using UV-VIS spectroscopy and TEM. The appearance of surface plasmon resonance peak, characteristic of silver nanoparticles at 420 nm in UV-VIS absorption spectra of Ag-PMMA films confirms the formation of Ag-PMMA nanocomposite. TEM showed Ag nanoparticles of average size 8 nm embedded in PMMA matrix. Analysis of absorption and reflection data indicates towards the reduction in optical band gap and increase in refractive index of the resulting nanocomposite. The synthesized Ag-PMMA nanocomposite has been found to be more conducting than PMMA as ascertained using I-V studies. The decrease in band gap and increase in conductivity can be correlated due to the formation of localized electronic states in PMMA matrix due to insertion of Ag nanoparticles. The PMMA thin films with dispersed silver nanoparticles may be useful for nanophotonic devices.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3241
Author(s):  
Manal N. Abdel Azeem ◽  
Safwat Hassaballa ◽  
Osama M. Ahmed ◽  
Khaled N. M. Elsayed ◽  
Mohamed Shaban

More suitable wastewater treatment schemes need to be developed to get rid of harmful dyes and pigments before they are discharged, primarily from apparel and textile factories, into water bodies. Silver nanoparticles (Ag-NPs) are very effective, reductive nanocatalysts that can degrade many organic dyes. In this study, Ag-NPs are stabilized and capped with bioactive compounds such as Galaxaura elongata, Turbinaria ornata, and Enteromorpha flexuosa from marine macroalgae extracts to produce Ag[GE], Ag[TE], and Ag[EE] NPs. The reduction of Ag ions and the production of Ag[GE], Ag[TE], and Ag[EE] NPs have been substantiated by UV–Vis spectroscopy, SEM, EDX, and XRD tests. The NPs are sphere and crystalline shaped in nature with dimensions ranging from 20 to 25 nm. The biosynthesized Ag[GE], Ag[TE], Ag[EE] NPs were applied to photodegrade hazardous pigments such as methylene blue, Congo red, safranine O, and crystal violet under sunlight irradiation. In addition to the stability analysis, various experimental parameters, including dye concentration, exposure period, photocatalyst dose, and temperature, were optimized to achieve 100% photodegradation of the dyes. Moreover, the thermodynamic and kinetic parameters were calculated and the impact of scavengers on the photocatalytic mechanism was also investigated.


2021 ◽  
Vol 10 (3) ◽  
pp. 16-24
Author(s):  
Sherin Monichan ◽  
P. Mosae Selvakumar ◽  
Christine Thevamithra ◽  
M. S. A. Muthukumar Nadar ◽  
Jesse Joel

Silver nanoparticles has been used since ages, even till now it is exploited in almost all areas like medicine, textiles, industries, cosmetics, purification, dying and many more. There are many approaches which are used to synthesize silver nanoparticles. However, these approaches are either harmful to the environment or very costly. Therefore, green synthesis of silver nanoparticles (AgNPs) using leaves of Filicium decipiens eco-friendly and a very reliable method to procure AgNPs. Characterization of synthesized AgNPs were then done using UV-Vis spectroscopy and fluorescence which confirmed the formation of AgNPs, scanning electron microscope (SEM)confirmed its shape to be round and X-ray diffraction (XRD) determined its crystalline nature as face centered cubic structure. Furthermore, Dynamic Light Scattering (DLS) was also done in order to know the average diameter and zeta potential of AgNPs. However, it did not show potential results due to the aggregates formed during the green synthesis of AgNPs. In addition to this, anti-microbial test against bacteria such as gram negative (Escherichia. Coli) and gram positive (Bacillus.spc) were done using well-diffusion method and also its application of antimicrobial activity was tested over fabric to understand its application in textile industries. In both the cases, AgNPs showed more efficiency in gram negative bacteria than gram- positive.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Michael Ndikau ◽  
Naumih M. Noah ◽  
Dickson M. Andala ◽  
Eric Masika

The wide-scale application of silver nanoparticles (AgNPs) in areas such as chemical sensing, nanomedicine, and electronics has led to their increased demand. Current methods of AgNPs synthesis involve the use of hazardous reagents and toxic solvents. There is a need for the development of new methods of synthesizing AgNPs that use environmentally safe reagents and solvents. This work reports a green method where silver nanoparticles (AgNPs) were synthesized using silver nitrate and the aqueous extract of Citrullus lanatus fruit rind as the reductant and the capping agent. The optimized conditions for the AgNPs synthesis were a temperature of 80°C, pH 10, 0.001 M AgNO3, 250 g/L watermelon rind extract (WMRE), and a reactant ratio of 4 : 5 (AgNO3 to WMRE). The AgNPs were characterized by Ultraviolet-Visible (UV-Vis) spectroscopy exhibiting a λmax at 404 nm which was consistent with the spectra of spherical AgNPs within the wavelength range of 380–450 nm, and Cyclic Voltammetry (CV) results showed a distinct oxidation peak at +291 mV while the standard reference AgNPs (20 nm diameter) oxidation peak occurred at +290 mV, and Transmission Electron Microscopy (TEM) revealed spherical shaped AgNPs. The AgNPs were found to have an average diameter of 17.96±0.16 nm.


2014 ◽  
Vol 4 (3) ◽  
pp. 43-46
Author(s):  
Tan Man Nguyen ◽  
Hai Le ◽  
Huu Tu Le ◽  
Thu Hong Tran ◽  
Duy Hang Nguyen ◽  
...  

Silver nanoparticles were prepared from (Ag+) aqueous solution by the method of γ-ray irradiation using chitosan as stabilizer. The saturated conversion dose (Ag+ à Ago) determined by UV-Vis spectroscopy was found to be about 16 kGy. The UV-Vis spectrum showed that an absorption peak at λmax = 400 nm due to surface plasma resonance. The image of transmission electron microscopy (TEM) showed that the silver nanoparticles were mostly spherical in shape and the average diameter was of about ~ 12 nm. The prepared colloidal silver nanoparticles solution was in good stability during storage time.


2021 ◽  
Vol 1039 ◽  
pp. 215-224
Author(s):  
Noor Fakher Khdr ◽  
Bassam G. Rasheed ◽  
Baida M. Ahmed

Abstract. Laser ablation of a silver target immersed in distilled water utilizing Nd: YAG laser with wavelengths of 532nm,1064nm, and 1320nm was carried out to fabricate silver nanoparticles. The synthesis of Ag NPs was carried out using various laser energy (200-1000 mJ) and different pulses (200-1000 pulse). Optical properties for the Ag nanoparticles solution were tested using UV-Visible spectrum, while the morphological properties for the Ag-nanoparticles solution after deposited on glass were tested using the atomic force microscope (AFM). The results showed that the synthesis of the Ag-nanoparticles using pulsed laser ablation in liquid (PLAL) (water) gives nanoparticles with homogeneous grain distribution and uniform surface roughness. It was found that the absorption peaks of Ag NPs increase by increasing the number of pulses shoot for the same laser wavelength and laser energy, and the reported maximum value of absorption peak is 0.363 when using 1000 pulses shoot. AFM results showed that the average diameter of the Ag NPs prepared by PLAL increases with increasing the laser wavelength. However, when using laser wavelengths of 1320nm,1064nm, and 532nm, the resulted average diameter of silver nanoparticles will be 55.38nm, 34.18nm, and 30.3nm, respectively. Finally, the average surface roughness of the Ag NPs prepared by PLAL increased with increasing the laser wavelength. The obtained average surface roughness of silver nanoparticles when using wavelengths of 1320nm,1064nm, and 532nm were 2.75nm, 1.19nm, and1.06nm, respectively.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 202 ◽  
Author(s):  
Luminita David ◽  
Bianca Moldovan

The present article reports an environmentally benign method for synthesizing silver nanoparticles using the fruit extract of Viburnum opulus L. as a source of bioactive compounds, which can act as reducing agents of the silver ions and also as stabilizing agents of the obtained nanoparticles. The catalytic ability of the synthesized silver nanoparticles (AgNPs) to remove toxic organic dyes was also evaluated. The biosynthesis of silver nanoparticles was firstly confirmed by UV-Vis spectral analysis, which revealed the presence of the characteristic absorption peak at 415 nm corresponding to the surface plasmon vibration of colloidal silver. Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) studies were conducted to confirm the presence of bioactive phytocompounds, especially phenolics, as capping and stabilizing agents of the AgNPs. The size, morphology and crystalline nature of the synthesized AgNPs were investigated by transmission electron microscopy and X-ray diffraction techniques revealing that the obtained nanoparticles were spherical shaped, with an average diameter of 16 nm, monodispersed, face centered cubic nanoparticles. Further, the catalytic ability in the degradation of tartrazine, carmoisine and brilliant blue FCF dyes by NaBH4 was evaluated. The results demonstrated an efficient activity against all the investigated dyes being an outstanding catalyst for the degradation of brilliant blue FCF. This eco-friendly synthetic approach can generate new tools useful in environmental pollution control.


2011 ◽  
Vol 332-334 ◽  
pp. 1235-1238 ◽  
Author(s):  
Yong Tang Jia ◽  
Qing Qing Liu ◽  
Xiang Ying Zhu

Electrospun poly(ε-caprolactone) (PCL) fibers containing silver nanoparticles were successfully prepared from PCL solutions added silver collide. The silver collide were obtained by N, N-dimethylformamide (DMF) reducing silver nitrate (AgNO3). The effects of PCL concentration and the content of silver nanoparticles on composite fibers morphology were characterized by field-emission scanning electron microscopy (FESEM). The existence of Ag nanoparticles on the electrospun fibers was approved by X-Ray diffraction (XRD). Simultaneously, the contact angles of fiber membranes were measured. The results indicated that uniform fibers were obtained when PCL concentration was 9wt%, the average diameter of fiber was significantly decreased as increasing the amount of silver collide, and Ag nanoparticles were successfully incorporated into the PCL fibers.


2016 ◽  
Vol 4 (3) ◽  
pp. 254-258 ◽  
Author(s):  
Mona Hussein Ibraheim ◽  
A.A. Ibrahiem ◽  
T. R. Dalloul

Green synthesis of silver nanoparticles (AgNPs) from silver nitrate was carried out using aqueous Pomegranate juice extract (PJE) as a reducing agent. The formation of AgNPs was characterized by UV-visible (UV–vis) spectroscopy, transmission electron microscopy (TEM), Fourier transforms infrared spectroscopy and X-ray diffraction (XRD). Surface Plasmon resonance (SPR) of ∼420-423 nm confirmed the earlier formation of AgNPs. TEM and XRD analysis showed that the AgNPs with an average diameter of 23 nm are crystalline in nature and have face-centered cubic geometry. The antibacterial efficiency of AgNPs against Escherchia coli and Staphylococcus aureus showed high level of inhibition. Further, the zone of inhibition increased with the increase in the concentration of silver nanoparticles. These studies are quite useful as it shows the utility of green nanotechnology for the synthesis of silver nanoparticles without any toxic residuals and byproducts. The efficient antimicrobial activity of biosynthesized AgNPs proves the application potential in the area of nano-medicine.Int J Appl Sci Biotechnol, Vol 4(3): 254-258


Sign in / Sign up

Export Citation Format

Share Document