scholarly journals Study on the Applicability of Varshni Potential to Predict the Mass Spectra of the Quark-Antiquark Systems in a Non-relativistic Framework

2021 ◽  
Vol 14 (4) ◽  
pp. 339-347

Abstract: In this work, we obtain the Schrödinger equation solutions for the Varshni potential using the Nikiforov-Uvarov method. The energy eigenvalues are obtained in non-relativistic regime. The corresponding eigenfunction is obtained in terms of Laguerre polynomials. We applied the present results to calculate heavy-meson masses of charmonium cc ¯ and bottomonium bb ¯. The mass spectra for charmonium and bottomonium multiplets have been predicted numerically. The results are in good agreement with experimental data and the works of other researchers. Keywords: Schrödinger equation, Varshni potential, Nikiforov-Uvarov method, Heavy meson. PACs: 14.20.Lq; 03.65.-w; 14.40.Pq; 11.80.Fv.

2016 ◽  
Vol 94 (5) ◽  
pp. 517-521 ◽  
Author(s):  
Akpan N. Ikot ◽  
Tamunoimi M. Abbey ◽  
Ephraim O. Chukwuocha ◽  
Michael C. Onyeaju

In this paper, we obtain the bound state energy eigenvalues and the corresponding eigenfunctions of the Schrödinger equation for the pseudo-Coulomb potential plus a new improved ring-shaped potential within the framework of cosmic string space–time using the generalized parametric Nikiforov–Uvarov method. Our results are in good agreement with other works in the cosmic string space–time and reduced to those in the Minkowski space–time when α = 1.


2009 ◽  
Vol 18 (03) ◽  
pp. 631-641 ◽  
Author(s):  
V. H. BADALOV ◽  
H. I. AHMADOV ◽  
A. I. AHMADOV

In this work, the analytical solution of the radial Schrödinger equation for the Woods–Saxon potential is presented. In our calculations, we have applied the Nikiforov–Uvarov method by using the Pekeris approximation to the centrifugal potential for arbitrary l states. The bound state energy eigenvalues and corresponding eigenfunctions are obtained for various values of n and l quantum numbers.


2013 ◽  
Vol 68 (6-7) ◽  
pp. 427-432 ◽  
Author(s):  
Ali Akbar Rajabi ◽  
Majid Hamzavi

By using the Nikiforov-Uvarov (NU) method and a new approximation scheme to the centrifugal term, we obtained the solutions of the radial Schrödinger equation (SE) for the modified Rosen- Morse (mRM) potential. In this paper, we get the approximate energy eigenvalues and show that the results are in good agreement with those obtained before. Eigenfunctions are also presented for completeness.


2008 ◽  
Vol 19 (02) ◽  
pp. 221-235 ◽  
Author(s):  
SAMEER M. IKHDAIR ◽  
RAMAZAN SEVER

We present analytically the exact energy bound-states solutions of the Schrödinger equation in D dimensions for a recently proposed modified Kratzer plus ring-shaped potential by means of the Nikiforov–Uvarov method. We obtain an explicit solution of the wave functions in terms of hyper-geometric functions (Laguerre polynomials). The results obtained in this work are more general and true for any dimension which can be reduced to the well-known three-dimensional forms given by other works.


2021 ◽  
Vol 67 (2 Mar-Apr) ◽  
pp. 193
Author(s):  
E. P. Inyang ◽  
E. S. William ◽  
J. A. Obu

Analytical solutions of the N-dimensional Schrödinger equation for the newly proposed Varshni-Hulthén potential are obtained within the framework of Nikiforov-Uvarov method by using Greene-Aldrich approximation scheme to the centrifugal barrier. The numerical energy eigenvalues and the corresponding normalized eigenfunctions are obtained in terms of Jacobi polynomials. Special cases of the potential are equally studied and their numerical energy eigenvalues are in agreement with those obtained previously with other methods. However, the behavior of the energy for the ground state and several excited states is illustrated graphically.


2008 ◽  
Vol 23 (12) ◽  
pp. 1919-1927 ◽  
Author(s):  
YAN-FU CHENG ◽  
TONG-QING DAI

The bound state solutions of the Schrödinger equation with a new ring-shaped nonharmonic potential are presented using exactly the Nikiforov–Uvarov method. It is found that the solutions of the angular wave function can be expressed by Jacobi polynomial and radial wave functions are given by the generalized Laguerre polynomials. We also discuss the special case for α = 0 and β = 0 respectively.


2000 ◽  
Vol 15 (02) ◽  
pp. 209-226 ◽  
Author(s):  
R. N. FAUSTOV ◽  
V. O. GALKIN ◽  
A. V. TATARINTSEV ◽  
A. S. VSHIVTSEV

The method reducing the solution of the Schrödinger equation for several types of power potentials to the solution of the eigenvalue problem for the infinite system of algebraic equations is developed. The finite truncation of this system provides high accuracy results for low-lying levels. The proposed approach is appropriate both for analytic calculations and for numerical computations. This method allows also to determine the spectrum of the Schrödinger-like relativistic equations. The heavy quarkonium (charmonium and bottomonium) mass spectra for the Cornell potential and the sum of the Coulomb and oscillator potentials are calculated. The results are in good agreement with experimental data.


2020 ◽  
Vol 66 (6 Nov-Dec) ◽  
pp. 730 ◽  
Author(s):  
E. S. William ◽  
E. P. Inyang ◽  
E. A. Thompson

In this study, we obtained bound state solutions of the radial Schrödinger equation by the superposition of Hulthén plus Hellmann potential within the framework of Nikiforov-Uvarov (NU) method for an arbitrary  - states. The corresponding normalized wave functions expressed in terms of Jacobi polynomial for a particle exposed to this potential field was also obtained. The numerical energy eigenvalues for different quantum state have been computed. Six special cases are also considered and their energy eigenvalues are obtained. Our results are found to be in good agreement with the results in literature. The behavior of energy in the ground and excited state for different quantum state are studied graphically.


Open Physics ◽  
2008 ◽  
Vol 6 (3) ◽  
Author(s):  
Sameer Ikhdair ◽  
Ramazan Sever

AbstractA new non-central potential, consisting of a pseudoharmonic potential plus another recently proposed ring-shaped potential, is solved. It has the form $$ V(r,\theta ) = \tfrac{1} {8}\kappa r_e^2 \left( {\tfrac{r} {{r_e }} - \tfrac{{r_e }} {r}} \right)^2 + \tfrac{{\beta cos^2 \theta }} {{r^2 sin^2 \theta }} $$. The energy eigenvalues and eigenfunctions of the bound-states for the Schrödinger equation in D-dimensions for this potential are obtained analytically by using the Nikiforov-Uvarov method. The radial and angular parts of the wave functions are obtained in terms of orthogonal Laguerre and Jacobi polynomials. We also find that the energy of the particle and the wave functions reduce to the energy and the wave functions of the bound-states in three dimensions.


2021 ◽  
Vol 67 (3 May-Jun) ◽  
pp. 482
Author(s):  
I. O. Akpan ◽  
E. P. Inyang ◽  
E. P Inyang ◽  
E. S. William

Hulthén plus Hellmann potentials are adopted as the quark-antiquark interaction potential for studying the mass spectra of heavy mesons. We solved the radial Schrödinger equation analytically using the Nikiforov-Uvarov method. The energy eigenvalues and corresponding wave function in terms of Laguerre polynomials were obtained. The present results are applied for calculating the mass of heavy mesons such as charmonium and bottomonium. Four special cases were considered when some of the potential parameters were set to zero, resulting into Hellmann potential, Yukawa potential, Coulomb potential, and Hulthén potential, respectively. The present potential provides satisfying results in comparison with experimental data and the work of other researchers.


Sign in / Sign up

Export Citation Format

Share Document