crystalline swelling
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Sai Adapa ◽  
Ateeque Malani

The swelling capacity and stability of clay play a crucial role in various areas ranging from cosmetics to oil extraction; hence change in their swelling behavior after cation exchange with the surrounding medium is important for their efficient utilization. Here we focus on understanding the role of different hydration properties of cation on the thermodynamics of clay swelling by water adsorption. We have used mica as the reference clay, Na+, Li+, and H+ ions as the interstitial cations, and performed grand canonical Monte Carlo simulations of water adsorption in mica pores (of widths d = 4−40 Å). We found that water adsorption in Na-, Li- and H-mica pores is qualitatively similar; however significant quantitative differences are observed, especially at smaller d. Higher water density in H-mica pores (ρH) was expected due to the smaller size of H+ ions having higher hydration energy. However, a counter-intuitive trend of ρLi > ρNa > ρb (bulk density) > ρH was observed due to adsorption energy where the contribution of mica framework atoms was also found to be significant. The disjoining pressure (Π), swelling free energy (∆Ωex), and several structural properties of confined water and ions were calculated to perform thermodynamic analysis of the system. Our detailed calculations have captured the structural evolution of ions and water, especially the transitions from mono- to bi- and multilayer as a function of d. Oscillatory behavior in the Π and ∆Ωex profiles with diminishing to zero for d ≥ 11 Å is observed in all three mica systems. A shift in the location of global minima of ∆Ωex towards the higher d values and ∆Ωex becoming more repulsive is observed in the increasing order of hydration energy of Na+, Li+, and H + ions. The ∆Ωex for Na-mica is characterized by global minima at d = 6 Å corresponding to crystalline swelling, a significant barrier for crystalline swelling from d = 6 to 9 Å and lower for crystalline (d = 9 Å) to osmotic swelling (d > 12 Å). For Li-mica, the energy barrier for crystalline to osmotic swelling is lesser compared to the Na-mica system, whereas for H-mica the ∆Ωex > 0 for all d thus favoring osmotic swelling. We found that the hydration of cations by surface atoms plays a key role in the thermodynamics of clay swelling. The Na+ ions hydrate more number of surface oxygens, act as anchors, and hold the mica pore at d = 6 Å by sharing hydrating water with ions of opposite sides forming an electrostatically connected bridge of mica Na-water-Na-mica. The Li+ ions do hydrate surface oxygen atoms, albeit lesser number and sharing of hydration shell with nearby Li+ ions is also minimum. Both, surface hydration and water sharing, is minimum in the H+ ion case, as they are mostly present in the center of the pore as diffusive ions; thus exerting a consistent osmotic pressure on the mica frameworks, favoring swelling.


2020 ◽  
Author(s):  
Timothy Wangler

The characterization of swelling clays is important for diverse fields, including the field of conservation of built cultural heritage. Villarlod molasse, a building stone utilized frequently across Switzerland, is known to be damaged by swelling clays embedded in its matrix. In this study, the mechanism of how the clays lead to swelling in the stone itself is examined, and similar to previous studies, crystalline swelling is noted as the most likely source. A scaling factor linking X-ray diffraction (XRD) and dilatometric swelling experiments is calculated, and evidence for the existence of an initial monolayer of moisture in the embedded clays at ambient relative humidities is presented. A qualitative micromechanical model describing how the nonswelling stone matrix exerts a pressure on the clay layers, affecting their swelling behavior, is presented.


2018 ◽  
Vol 55 (12) ◽  
pp. 1824-1836 ◽  
Author(s):  
A.S. Acikel ◽  
W.P. Gates ◽  
R.M. Singh ◽  
A. Bouazza ◽  
D.G. Fredlund ◽  
...  

Three different chilled-mirror hygrometer test procedures were developed to investigate the time-dependent unsaturated behaviour of powdered and granular bentonite based needle-punched geosynthetic clay liners (GCLs) on both the wetting and drying paths of the water retention curve (WRC). The GCL structure and bentonite forms governed the effect of measurement time and duration as well as the time-dependent suction changes of the bentonite component at a constant gravimetric water content. A conceptual model is proposed to explain the observed time-dependent unsaturated behaviour of the GCLs. The model suggests that the cross-over points on WRCs correspond to the point where bentonite crystallite separation is maximized within the crystalline swelling regime of smectite, forming a four-layer hydrate state where smectite interlayer spaces are filled with water. At gravimetric water contents below this point, the interlayer space dominated the suction, while at higher water contents, mesopores and macropores played increasingly important roles in determining the suction. The results reported herein provide further proof that the unsaturated behaviour of GCLs is largely controlled by the bentonite component.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Marwa Ammar ◽  
Walid Oueslati

This work reports characterization of the possible effects that might distress the hydration properties of Mg-exchanged low-charge montmorillonite (SWy-2) when it undergoes external environmental solicitation. This perturbation was created by an alteration of relative humidity rates (i.e., RH%) over two hydration-dehydration cycles with different sequence orientations. Structural characterization is mainly based on the X-ray diffraction (XRD) profile-modeling approach achieved by comparing the “in situ” obtained experimental 00l reflections with other ones calculated from theoretical models. This method allows assessing the evolution of the interlayer water retention mechanism and the progress of diverse hydration state’s contributions versus external strain. Obtained results prove that the hydration behavior of the studied materials is strongly dependent on the RH sequence orientation which varied over cycles. The interlayer organization of Mg-exchanged montmorillonite (i.e., SWy-2-Mg) is characterized by a heterogeneous hydration behavior, which is systematically observed at different stages of both cycles. By comparing the interlayer water process evolution of Mg-exchanged montmorillonite with the observed SWy-2-Ni sample hydration behaviors, a same hysteresis thickness characterized by obvious fluctuations of interlayer water molecule abundances is observed. Nevertheless, in the case of Hg and Ba-saturated montmorillonite, the retention water process versus the applied cycles was steadier comparing with Mg ions.


2018 ◽  
Vol 30 (6) ◽  
pp. 1888-1897 ◽  
Author(s):  
Jiajia Zhang ◽  
Qiangqiang Liu ◽  
Yingbo Ruan ◽  
Shan Lin ◽  
Ke Wang ◽  
...  

JOM ◽  
2017 ◽  
Vol 70 (4) ◽  
pp. 479-484 ◽  
Author(s):  
Hongliang Li ◽  
Shaoxian Song ◽  
Xianshu Dong ◽  
Fanfei Min ◽  
Yunliang Zhao ◽  
...  

Clay Minerals ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 197-211 ◽  
Author(s):  
Anniina Seppälä ◽  
Eini Puhakka ◽  
Markus Olin

AbstractThe swelling and cation exchange properties of montmorillonite are fundamental in a wide range of applications ranging from nanocomposites to catalytic cracking of hydrocarbons. The swelling results from several factors and, though widely studied, information on the effects of a single factor at a time is lacking. In this study, density functional theory (DFT) calculations were used to obtain atomic-level information on the swelling of montmorillonite. Molecular dynamics (MD) was used to investigate the swelling properties of montmorillonites with different layer charges and interlayer cationic compositions. Molecular dynamics calculations, with CLAYFF force field, consider three layer charges (−1.0, −0.66 and −0.5 e per unit cell) arising from octahedral substitutions and interlayer counterions of Na, K and Ca. The swelling curves obtained showed that smaller layer charge results in greater swelling but the type of the interlayer cation also has an effect. The DFT calculations were also seen to predict larger d values than MD. The formation of 1, 2 and 3 water molecular layers in the interlayer spaces was observed. Finally, the data from MD calculations were used to predict the selfdiffusion coefficients of interlayer water and cations in different montmorillonites and in general the coefficient increased with increasing water content and with decreasing layer charge.


Sign in / Sign up

Export Citation Format

Share Document