scholarly journals Crystalline Swelling Process of Mg-Exchanged Montmorillonite: Effect of External Environmental Solicitation

2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Marwa Ammar ◽  
Walid Oueslati

This work reports characterization of the possible effects that might distress the hydration properties of Mg-exchanged low-charge montmorillonite (SWy-2) when it undergoes external environmental solicitation. This perturbation was created by an alteration of relative humidity rates (i.e., RH%) over two hydration-dehydration cycles with different sequence orientations. Structural characterization is mainly based on the X-ray diffraction (XRD) profile-modeling approach achieved by comparing the “in situ” obtained experimental 00l reflections with other ones calculated from theoretical models. This method allows assessing the evolution of the interlayer water retention mechanism and the progress of diverse hydration state’s contributions versus external strain. Obtained results prove that the hydration behavior of the studied materials is strongly dependent on the RH sequence orientation which varied over cycles. The interlayer organization of Mg-exchanged montmorillonite (i.e., SWy-2-Mg) is characterized by a heterogeneous hydration behavior, which is systematically observed at different stages of both cycles. By comparing the interlayer water process evolution of Mg-exchanged montmorillonite with the observed SWy-2-Ni sample hydration behaviors, a same hysteresis thickness characterized by obvious fluctuations of interlayer water molecule abundances is observed. Nevertheless, in the case of Hg and Ba-saturated montmorillonite, the retention water process versus the applied cycles was steadier comparing with Mg ions.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Marwa Ammar ◽  
Walid Oueslati ◽  
Nejmeddine Chorfi ◽  
Hafsia Ben Rhaiem

Interlamellar space organization of low-charge montmorillonite was studied by modeling of X-ray diffraction (XRD) patterns recorded under controlled relative humidity (RH) conditions on Ni saturated specimens. The quantitative XRD investigation, based on an indirect method consisting of the comparison of experimental00lreflections with the other calculated from structural models, is used to characterize eventual nanostructural changes alongc*axis of Ni-exchanged montmorillonite. This method allowed us to determine, respectively, the relative layer types contribution, the layer thickness, nanoconfiguration of the interlamellar space, and position, amount, and organization of water molecules and exchangeable cations. Obtained theoretical models exhibit heterogeneous hydration state which is the dominating character detected all over studied cycles. Along RH cycle a modification in the main structure of the host materials is performed and the presence of a mixed layer structure (MLS) is noted. The hydration hysteresis at the low and the high RH range can be explained by fluctuations in the water retention mechanism and hydration heterogeneities created within the smectite crystallite.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2010 ◽  
Vol 663-665 ◽  
pp. 542-545 ◽  
Author(s):  
Bing Jie Zhu ◽  
Xin Wei Wang ◽  
Mei Fang Zhu ◽  
Qing Hong Zhang ◽  
Yao Gang Li ◽  
...  

The PANI/ITO conducting nanocomposites have been synthesized by in-situ polymerization. The obtained nanocomposites were characterized by X-ray diffraction pattern, scanning electron microscopy and Fourier transform infrared. Electrical conductivity measurements on the samples pressed into pellets showed that the maximum conductivity attained 2.0 ± 0.05 S/cm for PANI/ITO nanocomposites, at ITO doping concentration of 10 wt%. The results of the present work may provide a simple, rapid and efficient approach for preparing PANI/ITO nanocomposites.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


2002 ◽  
Vol 57 (6) ◽  
pp. 621-624 ◽  
Author(s):  
Wolfgang Fraenk ◽  
Heinrich Nöth ◽  
Thomas M. Klapötke ◽  
Max Suter

AbstractTetraphenylphosphonium tetraazidoborate, [P(C6H5)4][B(N3)4], was obtained from B(N3)3 - in situ prepared from BH3 · O(C2H5)2 and HN3 - and [P(C6H5)4][N3]. Recrystallization from an acetonitrile / hexane mixture yielded colorless crystals in 60% yield. The molecular structurewas determined by single crystal X-ray diffraction and the [B(N3)4]- anionwas shown to possess S4 symmetry.


Soft Matter ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 734-743 ◽  
Author(s):  
Pinzhang Chen ◽  
Jingyun Zhao ◽  
Yuanfei Lin ◽  
Jiarui Chang ◽  
Lingpu Meng ◽  
...  

The structural evolution of NR during stretching at −40 °C and in the strain–temperature space.


2000 ◽  
Vol 07 (04) ◽  
pp. 437-446 ◽  
Author(s):  
G. RENAUD

The application of X-rays to the structural characterization of surfaces and interfaces, in situ and in UHV, is discussed on selected examples. Grazing incidence X-ray diffraction is not only a very powerful technique for quantitatively investigating the atomic structure of surfaces and interfaces, but is also very useful for providing information on the interfacial registry for coherent interfaces or on the strain deformation, island and grain sizes for incoherent epilayers.


Sign in / Sign up

Export Citation Format

Share Document