root stem cell
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 12)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Josep Mercadal ◽  
Isabel Betegón-Putze ◽  
Nadja Bosch ◽  
Ana I. Caño-Delgado ◽  
Marta Ibañes

AbstractStem cell niches are local microenvironments that preserve their unique identity while communicating with adjacent tissues. In the primary root of Arabidopsis thaliana, the stem cell niche comprises the expression of two transcription factors, BRAVO and WOX5, among others. Intriguingly, these proteins confine their own gene expression to the niche, as evidenced in each mutant background. Here we propose through mathematical modeling that BRAVO confines its own expression domain to the stem cell niche by attenuating its WOX5-dependent diffusible activator. This negative feedback drives WOX5 action to be spatially restricted as well. The results show that WOX5 diffusion and sequestration by binding to BRAVO is sufficient to drive realistic confined BRAVO expression at the stem cell niche. We propose that attenuation of a diffusible activator can be a general mechanism to confine genetic activity to a small region while at the same time maintain signaling within it and with the surrounding cells.


Author(s):  
Ran Lu ◽  
Balkan Canher ◽  
Anchal Bisht ◽  
Jefri Heyman ◽  
Lieven De Veylder

Abstract Quiescent centre (QC) cells represent an integral part of the root stem cell niche. They typically display a low division frequency that has been reported to be controlled by hormone signaling and different regulators, including the ETHYLENE RESPONSE FACTOR 115 (ERF115) transcription factor and D-type cyclins. Here, we applied a three-dimensional (3D) imaging to visualize the Arabidopsis QC cell number, volume and division patterns, including visualization of anticlinal divisions that cannot be deduced from longitudinal 2D imaging. We found that 5-day-old seedlings possess on average eight QC cells which are organized in a monolayered disc. In a period of 7 d, half of the QC cells undergo anticlinal division in a largely invariant space. Ectopic expression of ERF115 and CYCLIN D1;1 (CYCD1;1) promote both anticlinal and periclinal QC cell divisions, the latter resulting in a dual-layered QC zone holding up to 2-fold more QC cells compared with the wild type. In contrast, application of cytokinin or ethylene results in an increase in the number of periclinal, but a decrease in anticlinal QC divisions, suggesting that they control the orientation of QC cell division. Our data illustrate the power of 3D visualization in revealing unexpected QC characteristics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mónica L. García-Gómez ◽  
Adriana Garay-Arroyo ◽  
Berenice García-Ponce ◽  
María de la Paz Sánchez ◽  
Elena R. Álvarez-Buylla

The root stem cell niche (SCN) of Arabidopsis thaliana consists of the quiescent center (QC) cells and the surrounding initial stem cells that produce progeny to replenish all the tissues of the root. The QC cells divide rather slowly relative to the initials, yet most root tissues can be formed from these cells, depending on the requirements of the plant. Hormones are fundamental cues that link such needs with the cell proliferation and differentiation dynamics at the root SCN. Nonetheless, the crosstalk between hormone signaling and the mechanisms that regulate developmental adjustments is still not fully understood. Developmental transcriptional regulatory networks modulate hormone biosynthesis, metabolism, and signaling, and conversely, hormonal responses can affect the expression of transcription factors involved in the spatiotemporal patterning at the root SCN. Hence, a complex genetic–hormonal regulatory network underlies root patterning, growth, and plasticity in response to changing environmental conditions. In this review, we summarize the scientific literature regarding the role of hormones in the regulation of QC cell proliferation and discuss how hormonal signaling pathways may be integrated with the gene regulatory network that underlies cell fate in the root SCN. The conceptual framework we present aims to contribute to the understanding of the mechanisms by which hormonal pathways act as integrators of environmental cues to impact on SCN activity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sangrea Shim ◽  
Hee Kyoung Kim ◽  
Soon Hyung Bae ◽  
Hoonyoung Lee ◽  
Hyo Ju Lee ◽  
...  

AbstractIn vitro plant regeneration involves a two-step practice of callus formation and de novo organogenesis. During callus formation, cellular competence for tissue regeneration is acquired, but it is elusive what molecular processes and genetic factors are involved in establishing cellular pluripotency. To explore the mechanisms underlying pluripotency acquisition during callus formation in monocot plants, we performed a transcriptomic analysis on the pluripotent and non-pluripotent rice calli using RNA-seq. We obtained a dataset of differentially expressed genes (DEGs), which accounts for molecular processes underpinning pluripotency acquisition and maintenance. Core regulators establishing root stem cell niche were implicated in pluripotency acquisition in rice callus, as observed in Arabidopsis. In addition, KEGG analysis showed that photosynthetic process and sugar and amino acid metabolism were substantially suppressed in pluripotent calli, whereas lipid and antioxidant metabolism were overrepresented in up-regulated DEGs. We also constructed a putative coexpression network related to cellular pluripotency in rice and proposed potential candidates conferring pluripotency in rice callus. Overall, our transcriptome-based analysis can be a powerful resource for the elucidation of the molecular mechanisms establishing cellular pluripotency in rice callus.


2020 ◽  
Author(s):  
Lisa Van den Broeck ◽  
Ryan J. Spurney ◽  
Adam P. Fisher ◽  
Michael Schwartz ◽  
Natalie M. Clark ◽  
...  

AbstractStem cells give rise to the entirety of cells within an organ. Maintaining stem cell identity and coordinately regulating stem cell divisions is crucial for proper development. In plants, mobile proteins, such as WOX5 and SHR, regulate divisions in the root stem cell niche (SCN). However, how these proteins coordinately function to establish systemic behavior is not well understood. We propose a non-cell autonomous role for WOX5 in the CEI and identify a regulator, AN3/GIF1, that coordinates CEI divisions. Here we show with a multiscale hybrid model integrating ODEs and agent-based modeling that QC and CEI divisions have different dynamics. Specifically, by combining continuous models to describe regulatory networks and agent-based rules, we model systemic behavior, which led us to predict cell-type-specific expression dynamics of SHR, SCR, WOX5, AN3, and CYCD6;1, and experimentally validate CEI cell divisions. Conclusively, our results show an interdependency between CEI and QC divisions.Thumbnail image


2020 ◽  
Author(s):  
Pengcheng Li ◽  
Junjie Ma ◽  
Xueping Sun ◽  
Chuanzhi Zhao ◽  
Changle Ma ◽  
...  

Author(s):  
Bingsheng Lv ◽  
Kongqin Hu ◽  
Te Tian ◽  
Kaijing Wei ◽  
Feng Zhang ◽  
...  

2020 ◽  
Vol 39 (20) ◽  
Author(s):  
Huawei Zhai ◽  
Xiaoyue Zhang ◽  
Yanrong You ◽  
Lihao Lin ◽  
Wenkun Zhou ◽  
...  

2019 ◽  
Vol 182 (4) ◽  
pp. 1776-1792 ◽  
Author(s):  
Barbara Berckmans ◽  
Gwendolyn Kirschner ◽  
Nadja Gerlitz ◽  
Ruth Stadler ◽  
Rüdiger Simon

Sign in / Sign up

Export Citation Format

Share Document