cycling gene
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Rocio A. Barahona ◽  
Samuel Morabito ◽  
Vivek Swarup ◽  
Kim N. Green

AbstractMicroglia are subject to change in tandem with the endogenously generated biological oscillations known as our circadian rhythm. Studies have shown microglia harbor an intrinsic molecular clock which regulates diurnal changes in morphology and influences inflammatory responses. In the adult brain, microglia play an important role in the regulation of condensed extracellular matrix structures called perineuronal nets (PNNs), and it has been suggested that PNNs are also regulated in a circadian and diurnal manner. We sought to determine whether microglia mediate the diurnal regulation of PNNs via CSF1R inhibitor dependent microglial depletion in C57BL/6J mice, and how the absence of microglia might affect cortical diurnal gene expression rhythms. While we observe diurnal differences in microglial morphology, where microglia are most ramified at the onset of the dark phase, we do not find diurnal differences in PNN intensity. However, PNN intensity increases across many brain regions in the absence of microglia, supporting a role for microglia in the regulation of PNNs. Here, we also show that cortical diurnal gene expression rhythms are intact, with no cycling gene changes without microglia. These findings demonstrate a role for microglia in the maintenance of PNNs, but not in the maintenance of diurnal rhythms.


Author(s):  
Alonso Favela ◽  
Martin O. Bohn ◽  
Angela Kent

Rewilding modern agricultural cultivars by reintroducing beneficial ancestral traits is a proposed approach to improve sustainability of modern agricultural systems. In this study, we compared recruitment of the rhizosphere microbiome among modern inbred maize and wild teosinte to assess whether potentially beneficial plant microbiome traits have been lost through maize domestication and modern breeding. To do this, we surveyed the bacterial and fungal communities along with nitrogen cycling functional groups in the rhizosphere of 6 modern domesticated maize genotypes and ancestral wild teosinte genotypes, while controlling for environmental conditions and starting soil inoculum. Using a combination of high-throughput sequencing and quantitative PCR, we found that the rhizosphere microbiomes of modern inbred and wild teosinte differed substantially in taxonomic composition, species richness, and abundance of N-cycling functional genes. Furthermore, the modern vs wild designation explained 27% of the variation in the prokaryotic microbiome, 62% of the variation in N-cycling gene richness, and 66% of N-cycling gene abundance. Surprisingly, we found that modern inbred genotypes hosted microbial communities with higher taxonomic and functional gene diversity within their microbiomes compared to ancestral genotypes. These results imply that modern maize and wild maize differ in their interaction with N-cycling microorganisms in the rhizosphere and that genetic variation exists within Zea to potentially ‘rewild’ microbiome-associated traits (i.e., exudation, root phenotypes, etc.).


2021 ◽  
Vol 12 ◽  
Author(s):  
Chun-Xu Xue ◽  
Heyu Lin ◽  
Xiao-Yu Zhu ◽  
Jiwen Liu ◽  
Yunhui Zhang ◽  
...  

Metagenomics and metatranscriptomics are powerful methods to uncover key micro-organisms and processes driving biogeochemical cycling in natural ecosystems. Databases dedicated to depicting biogeochemical pathways (for example, metabolism of dimethylsulfoniopropionate (DMSP), which is an abundant organosulfur compound) from metagenomic/metatranscriptomic data are rarely seen. Additionally, a recognized normalization model to estimate the relative abundance and environmental importance of pathways from metagenomic and metatranscriptomic data has not been organized to date. These limitations impact the ability to accurately relate key microbial-driven biogeochemical processes to differences in environmental conditions. Thus, an easy-to-use, specialized tool that infers and visually compares the potential for biogeochemical processes, including DMSP cycling, is urgently required. To solve these issues, we developed DiTing, a tool wrapper to infer and compare biogeochemical pathways among a set of given metagenomic or metatranscriptomic reads in one step, based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and a manually created DMSP cycling gene database. Accurate and specific formulae for over 100 pathways were developed to calculate their relative abundance. Output reports detail the relative abundance of biogeochemical pathways in both text and graphical format. DiTing was applied to simulated metagenomic data and resulted in consistent genetic features of simulated benchmark genomic data. Subsequently, when applied to natural metagenomic and metatranscriptomic data from hydrothermal vents and the Tara Ocean project, the functional profiles predicted by DiTing were correlated with environmental condition changes. DiTing can now be confidently applied to wider metagenomic and metatranscriptomic datasets, and it is available at https://github.com/xuechunxu/DiTing.


2021 ◽  
Author(s):  
Peter Francis Chuckran ◽  
Viacheslav Fofanov ◽  
Bruce A Hungate ◽  
Ember M A Morrissey ◽  
Egbert Schwartz ◽  
...  

Episodic inputs of labile carbon (C) to soil can rapidly stimulate nitrogen (N) immobilization by soil microorganisms. However, the transcriptional patterns that underlie this process remain unclear. In order to better understand the regulation of N cycling in soil microbial communities, we conducted a 48 h laboratory incubation with an agricultural soil where we stimulated the uptake of inorganic N by amending the soil with glucose. We analyzed the metagenome and metatranscriptome of the microbial communities at four timepoints that corresponded with changes in N availability. The relative abundances of genes remained largely unchanged throughout the incubation. In contrast, glucose addition rapidly increased transcription of genes encoding for ammonium and nitrate transporters, enzymes responsible for N assimilation into biomass, and genes associated with the N regulatory network. This upregulation coincided with an increase in transcripts associated with glucose breakdown and oxoglutarate production, demonstrating a connection between C and N metabolism. When concentrations of ammonium were low, we observed a transient upregulation of genes associated with the nitrogen fixing enzyme nitrogenase. Transcripts for nitrification and denitrification were downregulated throughout the incubation, suggesting that dissimilatory transformations of N may be suppressed in response to labile C inputs in these soils. These results demonstrate that soil microbial communities can respond rapidly to changes in C availability by drastically altering the transcription of N cycling genes.


Sign in / Sign up

Export Citation Format

Share Document