surface front
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 2)

2020 ◽  
Vol 35 (5) ◽  
pp. 1733-1759
Author(s):  
Ty J. Buckingham ◽  
David M. Schultz

Abstract Nine tornado outbreaks (days with three or more tornadoes) have occurred in the United Kingdom from quasi-linear convective systems (QLCSs) in the 16 years between 2004 and 2019. Of the nine outbreaks, eight can be classified into two synoptic categories: type 1 and type 2. Synoptic categories are derived from the location of the parent extratropical cyclone and the orientation of the surface front associated with the QLCS. Environmental differences between the categories are assessed using ERA5 reanalysis data. Type 1 events are characterized by a confluent 500-hPa trough from the west, meridional cold front, strong cross-frontal wind veer (about 90°), cross-frontal temperature decrease of 2°–4°C, prefrontal 2-m dewpoint temperatures of 12°–14°C, a prefrontal low-level jet, and prefrontal 0–1- and 0–3-km bulk shears of 15 and 25 m s−1, respectively. In contrast, type 2 events are characterized by a diffluent 500-hPa trough from the northwest, zonal front, weaker cross-frontal wind veer (≤45°), much smaller cross-frontal temperature decrease, lower prefrontal 2-m dewpoint temperatures of 6°–10°C, and weaker prefrontal 0–1- and 0–3-km bulk shears of 10 and 15 m s−1, respectively. Analysis of the Met Office radar reflectivity mosaics revealed that narrow cold-frontal rainbands developed in all type 1 events and subsequently displayed precipitation core-and-gap structures. Conversely, type 2 events did not develop narrow cold-frontal rainbands, although precipitation cores developed sporadically within the wide cold-frontal rainband. Type 1 events produced tornadoes 2–4 h after core-and-gap development, whereas type 2 events produced tornadoes within 1 h of forming cores and gaps. All events produced tornadoes during a relatively short time period (1–3 h).


2020 ◽  
Vol 148 (2) ◽  
pp. 613-635 ◽  
Author(s):  
Stanley B. Trier ◽  
Scott D. Kehler ◽  
John Hanesiak

Abstract The environment of elevated nocturnal deep convection initiation (CI) on 24 June 2015 is investigated using radiosonde data from the Plains Elevated Convection at Night (PECAN) field experiment and a convection-allowing simulation. Elevated CI occurs around midnight in ascending westerly flow above the northeastern terminus of the nocturnal low-level jet (LLJ) several hundred kilometers poleward of the leading edge of a surface warm front. This CI originates from within preexisting banded altocumulus clouds that are supported by persistent large-scale ascent within the entrance region of a midtropospheric jet streak. Model trajectories calculated backward from convective updraft cores during CI indicate abrupt lifting at the leading edge of the surface front during the late afternoon to altitudes above that of the subsequent southerly LLJ. This air remains significantly subsaturated during northward movement until after several hours of weaker but persistent ascent within the highly elevated westerly airstream during the evening. Unlike in many previous studies of frontal overrunning by the LLJ, strong local drying occurs within the LLJ core. Nevertheless, vertical displacements from persistent mesoscale ascent were sufficient for trajectory air parcels to reach their LFC and sustain deep convection. The mesoscale upward displacement along trajectories is well explained by isentropic upglide associated with frontal overrunning at horizontal distances greater than 100 km from the CI and subsequent mature convection. However, the significant additional mesoscale vertical displacements needed for deep CI to occur in the westerlies above the horizontally convergent ~100-km-wide LLJ terminus region, were associated with local cooling and are not accounted for by steady isentropic upglide.


Glue-laminated timbers were produced using two species, Kelampayan and Sesendok. Polyvinyl Acetate (PVAc) was used as binder for the glue-laminated timber manufacturing. Screws with same diameter (3.5mm) and length (50mm), but with different angle and distance of pitch were used. The screw-withdrawal test position was selected for 3 direction designated as the surface, front and side. The test result found that both of pitches of screws are suitable for Kelampayan species. In side position, Kelampayan species showed the best screw holding strength and this result is followed by Sesendok species. In surface position, Pitch 2 has highest withdrawal strength for the Kelampayan species. In all position, Pitch 1 is suitable for Sesendok species and Pitch 2 is suitable for Kelampayan species. In both of pitches, Kelampayan attained higher withdrawal strength when compared to Sesendok.


2019 ◽  
Vol 147 (5) ◽  
pp. 1823-1841 ◽  
Author(s):  
Murong Zhang ◽  
Zhiyong Meng ◽  
Yipeng Huang ◽  
Dongyong Wang

Abstract An elevated convection initiation (CI) of a quasi-linear mesoscale convective system (MCS) that occurred in a weak-lifting environment in the early morning on 23 June 2016 in central-eastern China was investigated using observational analysis and convection-permitting numerical simulations. This MCS gradually developed into a surface-based MCS and eventually produced a strong supercell that spawned an EF4 tornado in Yancheng City of Jiangsu Province and killed 98 people. This elevated MCS was initiated ahead of a surface front without identifiable boundaries at the surface. An elevated moist absolutely unstable layer (MAUL) was found to be conducive to the CI. The MAUL provided negligible convective inhibition and contributed to CI without strong-lifting mechanisms. Numerical simulation results showed that the formation of the elevated MAUL was mainly attributed to adiabatic cooling by weak vertical ascent and sufficient horizontal moisture transport near the terminus of a low-level jet. The weak vertical ascent before the CI was sloping and was likely to be relevant to the layer-lifting process associated with the realization of potential instability. The results showed that the MAUL in this weak-lifting environment was characterized by a shallower depth, a weaker lapse rate, and a longer sustaining period than the conditions in a strong-lifting environment. The predictability of this elevated CI case was examined using a 10-member ensemble forecast. A total of 80% of the ensemble members captured the CI. Rather than a difference in lifting, whether having an elevated MAUL or not was the major difference between CI and non-CI members in the present case.


2019 ◽  
Vol 147 (2) ◽  
pp. 719-732
Author(s):  
Scott W. Powell ◽  
Michael M. Bell

Abstract Hurricane Matthew locally generated more than 400 mm of rainfall on 8–9 October 2016 over the eastern Carolinas and Virginia as it transitioned into an extratropical cyclone. The heaviest precipitation occurred along a swath situated up to 100–200 km inland from the coast and collocated with enhanced low-tropospheric frontogenesis. Analyses from version 3 of the Rapid Refresh (RAPv3) model indicate that rapid frontogenesis occurred over eastern North and South Carolina and Virginia on 8 October, largely over a 12-h time period between 1200 UTC 8 October and 0000 UTC 9 October. The heaviest rainfall in Matthew occurred when and where spiral rainbands intersected the near-surface front, which promoted the lift of conditionally unstable, moist air. Parallel to the spiral rainbands, conditionally unstable low-tropospheric warm, moist oceanic air was advected inland, and the instability was apparently released as the warm air mass rose over the front. Precipitation in the spiral rainbands intensified on 9 October as the temperature gradient along the near-surface front rapidly increased. Unlike in Hurricane Floyd over the mid-Atlantic states, rainfall totals within the spiral rainbands of Matthew as they approached the near-surface front evidently were not enhanced by release of conditional symmetric instability. However, conditional symmetric instability release in the midtroposphere may have enhanced rainfall 200 km northwest of the near-surface front. Finally, although weak cold-air damming occurred prior to heavy rainfall, damming dissipated prior to frontogenesis and did not impact rainfall totals.


2018 ◽  
Vol 99 (1) ◽  
pp. 149-165 ◽  
Author(s):  
Sebastian Schemm ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract For nearly a century, the study of atmospheric dynamics in the midlatitudes has presented dichotomic perspectives on one of its focal points: the birth and life cycle of cyclones. In particular, the role of fronts has driven much of the historical discourse on cyclogenesis. In the 1910s–20s, the Bergen School of Meteorology postulated that cyclogenesis occurs on a preexisting front. This concept was later replaced by the baroclinic instability paradigm, which describes the development of a surface front as a consequence of the growing cyclone rather than its cause. However, there is ample observational evidence for cyclogenesis on well-marked fronts (frontal-wave cyclones) as well as for cyclogenesis in the absence of fronts in broader baroclinic zones. Thus, after a century of research on the link between extratropical cyclones and fronts, this study has the objective of climatologically quantifying their relationship. By combining identification schemes for cyclones and fronts, the fraction of cyclones with attendant fronts is quantified at all times during the cyclones’ life cycle. The storm-track regions over the North Atlantic are dominated by cyclones that form on preexisting fronts. Over the North Pacific, the result more strongly depends on the front definition. Cyclones that acquire their fronts during the life cycle dominate over the continents and in the Mediterranean. Further, cyclones that develop attendant fronts during their life cycle typically do so around the time they attain maximum intensity. At the time of cyclolysis, at least 40% of all cyclones are still associated with a front. The number of occluded fronts at lysis has not been considered.


2017 ◽  
Vol 74 (12) ◽  
pp. 4241-4263 ◽  
Author(s):  
Mohammad Mirzaei ◽  
Ali R. Mohebalhojeh ◽  
Christoph Zülicke ◽  
Riwal Plougonven

Abstract Quantification of inertia–gravity waves (IGWs) generated by upper-level jet–surface front systems and their parameterization in global models of the atmosphere relies on suitable methods to estimate the strength of IGWs. A harmonic divergence analysis (HDA) that has been previously employed for quantification of IGWs combines wave properties from linear dynamics with a sophisticated statistical analysis to provide such estimates. A question of fundamental importance that arises is how the measures of IGW activity provided by the HDA are related to the measures coming from the wave–vortex decomposition (WVD) methods. The question is addressed by employing the nonlinear balance relations of the first-order δ–γ, the Bolin–Charney, and the first- to third-order Rossby number expansion to carry out WVD. The global kinetic energy of IGWs given by the HDA and WVD are compared in numerical simulations of moist baroclinic waves by the Weather Research and Forecasting (WRF) Model in a channel on the f plane. The estimates of the HDA are found to be 2–3 times smaller than those of the optimal WVD. This is in part due to the absence of a well-defined scale separation between the waves and vortical flows, the IGW estimates by the HDA capturing only the dominant wave packets and with limited scales. It is also shown that the difference between the HDA and WVD estimates is related to the width of the IGW spectrum.


2017 ◽  
Vol 74 (9) ◽  
pp. 2967-2987 ◽  
Author(s):  
Mankin Mak ◽  
Yi Lu ◽  
Yi Deng

Abstract With the Weather Research and Forecasting (WRF) Model specifically configured to simulate the intensification and evolution of an extratropical baroclinic wave, this study first investigates why cold fronts are characteristically longer, narrower, and more intense than warm fronts in the extratropical atmosphere. It is found that the differential thermal advection by the geostrophic and ageostrophic wind components in the two frontal regions results in a greater thermal contrast across the cold front. The length of the cold front is essentially the length scale of the intensifying baroclinic wave (i.e., on the order of radius of deformation). The frontal system as a whole moves eastward under the influence of a steering flow. In addition, the cold front outpaces the warm front eastward, making the western portion of the warm front progressively occluded and the eastern portion of the warm front shorter. The dynamical processes tend to move the cold front eastward, whereas the diabatic heating processes tend to move it westward, contributing to the narrowness of the cold front. This study also investigates whether, how, and why an upper-level front (ULF) would synergistically interact with a surface front (SF). It is found that a favorable circumstance for such interaction to occur in an observed extratropical cyclone and in the WRF Model simulation is when the ULF and SF are roughly parallel to one another with the ULF aloft located a few hundred kilometers to the west of the SF. The relative importance of “forcing” for the ageostrophic circulation associated with the geostrophic circulation, diabatic heating, and friction are diagnosed in such interaction.


2017 ◽  
Vol 145 (8) ◽  
pp. 2919-2941 ◽  
Author(s):  
Stanley B. Trier ◽  
James W. Wilson ◽  
David A. Ahijevych ◽  
Ryan A. Sobash

Radiosonde measurements from the Plains Elevated Convection At Night (PECAN) 2015 field campaign are used to diagnose mesoscale vertical motions near nocturnal convection initiation (CI). These CI events occur in distinctly different environments including ones with 1) strong forcing for ascent associated with a synoptic cold front and midtropospheric short wave, 2) nocturnal low-level jets interacting with weaker quasi-stationary fronts, or 3) the absence of a surface front or boundary altogether. Radiosonde-derived vertical motion profiles in each of these CI environments are characterized by low- to midtropospheric ascent. The representativeness of these vertical motion profiles is supported by distributions of corresponding mesoscale averages from model-produced 0–6-h ensemble forecasts. Thermodynamic data from radiosondes are then analyzed along with selected model ensemble members to elucidate the role of the vertical motions on subsequent CI. In a case with strong forcing for mesoscale ascent, vertical motions facilitated CI by reducing convection inhibition (CIN). However, in the majority of cases, weaker but persistent vertical motions contributed to the development of elevated, approximately saturated layers with lapse rates greater than moist adiabatic. Such layers have negligible CIN and, thereby, the capacity to support CI even without strong finescale triggering mechanisms in the environment. This aspect may distinguish much central U.S. nocturnal CI from typical daytime CI. The elevated unstable layers occur in disparate large-scale environments, but a common aspect of their development is mesoscale ascent in the presence of warm advection, which results in upward transports of moisture (contributing to local increases of moist static energy) with adiabatic cooling above.


2016 ◽  
Vol 73 (7) ◽  
pp. 2837-2850 ◽  
Author(s):  
Callum J. Shakespeare

Abstract A simple analytical model is developed to describe wave generation during frontogenesis forced by a horizontal strain field. In contrast to previous models, neither geostrophic nor hydrostatic balance is assumed. The generated waves are trapped in the strain field and form steady bands of enhanced vertical flow on either side of the surface front on scales from 1 to 100 km. The predictions of the analytical model are confirmed by comparison with fully nonlinear numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document