Comparison of wind characteristics at different heights of deep-cut canyon based on field measurement

2019 ◽  
Vol 23 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Jingyu Zhang ◽  
Mingjin Zhang ◽  
Yongle Li ◽  
Chen Fang

The typical U-shaped deep-cut canyon is widely distributed in the western mountainous areas of China, especially in Sichuan province and Yunnan province. The deep-cut canyon has the characteristics of the high drop in elevation, high-temperature difference, and complex wind environment. A 50 m high meteorological mast with a total of eight anemometers was erected in such topography, and a long-span suspension bridge will be constructed in the area where the meteorological mast is located. Based on the long-term monitor data, the wind characteristic parameters including average and fluctuating wind characteristics and coherence between different heights are investigated. The results are as follows. The dominant wind direction which depends on the topography is north–south. The attack angle of wind is mainly less than zero, and its probability distribution obeys the hypothetical Gaussian distribution. Both the increases in height of anemometer and in wind speed reduce the dispersion of the attack angle of wind. The gust factor has a similar change law of attack angle of wind. Turbulence intensities are affected by the height of the anemometer and the wind speed, and they are different from the recommended value of China Codes. In terms of turbulence integral length scale, the value increases with an increase in the height of the anemometer in the same component. The largest value occurs in the longitudinal direction and the smallest occurs in the vertical direction at the same level. The coherence between any two locations is relatively strong, and the longitudinal component is stronger than others. The measured wind power spectrum for longitudinal, lateral, and vertical wind in deep-cut canyon fits the von Kármán model better.

2013 ◽  
Vol 791-793 ◽  
pp. 378-381
Author(s):  
Hua Bai ◽  
Sen Hua Huang

The flutter stability of the steel truss suspension bridge is hard to reach the requirement of the wind resisting stability when lacks the torsional stiffness. This paper discusses the influence of aerodynamic measure combination, such as central stabilizer, air director enclosed anti-collision bar and so on, towards the flutter stability of steel truss through the wind tunnel experiment of the bridge of Liu Jia gorge. The result shows: the effect of using both the upper and lower stabilized plate is better than separated used it. when sectionalized dispose upper stabilized plate, the flutter critical wind speed of attack angle will decrease rapidly. Outlaying the horizontal guide plate is better than internally installed; The flutter stability of different attack angle tend to be balanced by widening the horizontal guide plate. The anti-collision bar can be functionalized as the central stabilizer by heightening and enclosing, and effectively increase the critical wind speed of different attack angles of the high truss suspension bridge.


2011 ◽  
Vol 255-260 ◽  
pp. 1214-1219 ◽  
Author(s):  
Hong Yu Jia ◽  
Shi Xiong Zheng ◽  
Lei Yang ◽  
Ming Qiang Xia

The seismic behavior research of Fengdu Bridge with nonlinear viscous dampers will be conducted to investigate two parameters of damping coefficient C and damping exponent ξ through nonlinear dynamic time-history analysis. Simultaneously, the analysis results are compared with the seismic response without viscous dampers and proposed control methods and formulas of a reasonable selecting damping coefficient C and damping exponent ξ are provided. The parameters sensitivity study indicates that setting dampers in longitudinal direction of bridge can reduce the relative displacement of key positions and the response of the bridge, the beneficial effect of the isolation in the longitudinal direction, but important amplification occurs in the vertical direction for relatively high frequency components. Moreover, the reference of application of nonlinear viscous damper will be provided for similar projects.


2016 ◽  
Vol 20 (8) ◽  
pp. 1223-1231 ◽  
Author(s):  
Yongle Li ◽  
Xinyu Xu ◽  
Mingjin Zhang ◽  
Youlin Xu

Wind tunnel test and computational fluid dynamics simulation were conducted to study the wind characteristics at a bridge site in mountainous terrain. The upstream terrains were classified into three types: open terrain, open terrain with a steep slope close to the bridge, and open terrain with a ridge close to the bridge. Results obtained from the two methods were compared, including mean speed profiles in the vertical direction and variations of wind speed and angle of attack along the bridge deck. In addition, turbulence intensities at the bridge site obtained from wind tunnel test were discussed. For mean speed profiles in the vertical direction, two methods are reasonably close for open terrain, while mountain shielding effects are evident for open terrain with a steep slope for both the methods, but the extents of effects appear different. Wind speed and angle of attack along the bridge deck are mainly influenced by the local terrain. Strong downslope wind is generated at the lee slope for the case of wind normal to top of the ridge. The comparative results are expected to provide useful references for the study of wind characteristics in mountainous terrain in the future.


2011 ◽  
Vol 243-249 ◽  
pp. 3858-3862
Author(s):  
Hong Yu Jia ◽  
Shi Xiong Zheng ◽  
Ming Qiang Xia ◽  
Lei Yang

The seismic behavior study of Fengdu Bridge will be conducted on a parameter of damping coefficient C of linear viscous dampers through linear dynamic time-history analysis. Simultaneously, the results are compared with the seismic response without viscous dampers. The parameter sensitivity study indicates that setting damper in longitudinal direction of bridge can reduce the relative displacement of key positions and the response of the bridge, the beneficial effect of the isolation in the longitudinal direction, but important amplification occurs in the vertical direction for relatively high frequency components. Moreover, the reference of application of linear viscous dampers will be provided for similar projects.


2011 ◽  
Vol 105-107 ◽  
pp. 9-12 ◽  
Author(s):  
Yi Qing Xiao ◽  
Gang Hu ◽  
Meng Qi Tu ◽  
Rui Qi Zheng

In this paper, the influence of turbulence integral scale to buffeting responses of long-span bridge is analyzed by adopting 2-D buffeting theory. One cable-stayed bridge and one suspension bridge are selected as analysis object. Buffeting responses are calculated under two different wind speeds and different size of turbulence integral scales, which range from 10m to 80m in this paper. The numerical results show that buffeting responses do not change with turbulence integral scale linearly and when turbulence integral scale increases to one value, buffeting responses reach a peak. In addition, turbulence integral scale corresponding to peak value of buffeting responses rise with growth of wind speed.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiujun Li ◽  
Yongguang Li ◽  
Jianting Zhou ◽  
Qian Wang ◽  
Xu Wang

To study the wind field characteristics near the ground pulsation in typhoon conditions, wind field conditions in the area affected by Typhoon “Fung-Wong” were monitored using wind field instruments installed in the construction building of Wenzhou University, China. Real-time wind field data were collected during typhoons. Wind characteristic parameters such as mean wind speed, wind direction angle, turbulence intensity, gust factor, peak factor, coherence function, and autocorrelation were analyzed, and the wind field characteristics during the typhoon were summarized. The results indicated that the longitudinal and lateral turbulence intensities decreased with an increase in the mean wind speed, and there was an obvious linear relationship between them. The vertical and horizontal gust factor and peak factor decreased with an increase in mean wind speed, and the trend was more obvious in the horizontal direction. There was a significant correlation between the gust factor and the peak factor. The turbulence intensity and gust factor decreased with time, and the turbulence intensity attenuation speed increased with time. The empirical curve presented by Davenport (1961) can simulate the correlation characteristics of the fluctuating wind speed components of Typhoon Fung-Wong at some measuring points. With an increase in the time difference, the dependence of the instantaneous values at the two time points gradually decreased.


2011 ◽  
Vol 243-249 ◽  
pp. 5094-5100 ◽  
Author(s):  
Ke Yang ◽  
Wen Hai Shi ◽  
Zheng Nong Li

This paper presents field measurement results of boundary layer wind characteristics over typical open country during the passages of typhoon Fung-wong passed by Wenzhou in July 2008. The field data such as wind speed and wind direction were measured from two propeller anemometers placed at the height of about 30m. The measured wind data are analyzed to obtain the information on mean wind speed and direction, turbulence intensity, gust factor, turbulence integral length scale and spectra of wind speed fluctuations. The results clearly demonstrate that the turbulence intensity and gust factor of typhoon Fung-wong are larger than normal, and there is a tendency for the turbulence intensities to decrease with the increase of the mean wind speed, however, there is another tendency for the turbulence integral length scale to increase with the increase of the mean wind speed. The power spectral densities of fluctuating wind speed in longitudinal and lateral directions obtained from the measured wind speed data roughly fit with Von Karman spectra. The results presented in this paper are expected to be of use to researchers and engineers involved in design of low-rise buildings.


2014 ◽  
Vol 501-504 ◽  
pp. 2297-2300
Author(s):  
Lun Hai Zhi

This paper presents statistical analysis results of wind speed and atmospheric turbulence data measured from a meteorological station in Beijing and is primarily intended to provide useful information on boundary layer wind characteristics for wind-resistant design of tall buildings and high-rise structures. Wind velocity data in longitudinal, lateral and vertical directions, which were recorded from an ultrasonic anemometer during windstorms, are analyzed and discussed. Atmospheric turbulence information such as turbulence intensity, gust factor, turbulence integral length scale and power spectral densities of the three-dimensional fluctuating wind velocity are presented and used to evaluate the adequacy of existing theoretical and empirical models. The objective of this study is to investigate the profiles of mean wind speed and atmospheric turbulence characteristics over a typical urban area.


Sign in / Sign up

Export Citation Format

Share Document