lake fryxell
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 9)

H-INDEX

24
(FIVE YEARS 1)

Author(s):  
Faith P. Palevich ◽  
Nikola Palevich ◽  
Paul H. Maclean ◽  
Eric Altermann ◽  
John Mills ◽  
...  

Clostridium bowmanii type strain DSM 14206 (ATCC BAA-581) was isolated from a microbial mat sample retrieved from Lake Fryxell, Antarctica. This report describes the generation and annotation of the 4.9-Mb draft genome sequence of C. bowmanii DSM 14206 T .


2021 ◽  
Author(s):  
Sheetal Tallada ◽  
Grant Hall ◽  
Daniel Barich ◽  
Joan L Slonczewski

The Antarctic Taylor Valley Lakes Fryxell and Bonney harbor oligotrophic microbial communities that are separated geographically from other aquatic systems. Their microbiomes include planktonic as well as lift-off mat communities that float to the underside of the perennial ice cover and eventually emerge at the surface. We investigated the antibiotic resistance genes (ARGs) from metagenomes of lift-off mats emerging from ice, from filtered water samples of Lake Fryxell, and from filtered water samples of Lake Bonney. ARG sequence markers were designed by ShortBRED-Identify using the Comprehensive Antibiotic Resistance Database (CARD). The overall proportion of ARG hits in the metagenomes was found to be similar to that found in temperate-zone rural water bodies with moderate human inputs (0.0002-0.0007%). The specific ARGs found showed distinct distributions for the two lakes, and for mat versus planktonic sources. An enrichment culture of Rhodoferax antarcticus from a Lake Fryxell mat sample showed a mat-forming phenotype not previously reported for this species. Its genome showed no ARGs associated with Betaproteobacteria, but had ARGs consistent with a Pseudomonas minor component. The Antarctic lake mats and water showed specific ARGs distinctive to the mat and water sources, but overall ARG levels were similar to those of temperate water bodies.


2021 ◽  
Vol 15 (8) ◽  
pp. 3577-3593
Author(s):  
Krista F. Myers ◽  
Peter T. Doran ◽  
Slawek M. Tulaczyk ◽  
Neil T. Foley ◽  
Thue S. Bording ◽  
...  

Abstract. Previous studies of the lakes of the McMurdo Dry Valleys have attempted to constrain lake level history, and results suggest the lakes have undergone hundreds of meters of lake level change within the last 20 000 years. Past studies have utilized the interpretation of geologic deposits, lake chemistry, and ice sheet history to deduce lake level history; however a substantial amount of disagreement remains between the findings, indicating a need for further investigation using new techniques. This study utilizes a regional airborne resistivity survey to provide novel insight into the paleohydrology of the region. Mean resistivity maps revealed an extensive brine beneath the Lake Fryxell basin, which is interpreted as a legacy groundwater signal from higher lake levels in the past. Resistivity data suggest that active permafrost formation has been ongoing since the onset of lake drainage and that as recently as 1500–4000 years BP, lake levels were over 60 m higher than present. This coincides with a warmer-than-modern paleoclimate throughout the Holocene inferred by the nearby Taylor Dome ice core record. Our results indicate Mid to Late Holocene lake level high stands, which runs counter to previous research finding a colder and drier era with little hydrologic activity throughout the last 5000 years.


2020 ◽  
Author(s):  
Krista F. Myers ◽  
Peter T. Doran ◽  
Slawek M. Tulaczyk ◽  
Neil T. Foley ◽  
Thue S. Bording ◽  
...  

Abstract. Previous studies of the lakes of the McMurdo Dry Valleys have attempted to constrain lake level history, and results suggest the lakes have undergone hundreds of meters of lake level change within the last 20,000 years. Past studies have utilized the interpretation of geologic deposits, lake chemistry, and ice sheet history to deduce lake level history, however a substantial amount of disagreement remains between the findings, indicating a need for further investigation using new techniques. This study utilizes a regional airborne resistivity survey to provide novel insight into the paleohydrology of the region. Mean resistivity maps revealed an extensive brine beneath the Lake Fryxell basin which is interpreted as a legacy groundwater signal from higher lake levels in the past. Resistivity data suggests that active permafrost formation has been ongoing since the onset of lake drainage, and that as recently as 1,000–1,500 yr BP, lake levels were over 60 m higher than present. This coincides with a warmer than modern paleoclimate throughout the Holocene inferred by the nearby Taylor Dome ice core record. Our results indicate mid to late Holocene lake level high stands which runs counter to previous research finding a colder and drier era with little hydrologic activity throughout the last 5,000 years.


PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0231053
Author(s):  
Megan L. Dillon ◽  
Ian Hawes ◽  
Anne D. Jungblut ◽  
Tyler J. Mackey ◽  
Jonathan A. Eisen ◽  
...  

2020 ◽  
Vol 96 (2) ◽  
Author(s):  
Megan L Dillon ◽  
Ian Hawes ◽  
Anne D Jungblut ◽  
Tyler J Mackey ◽  
Jonathan A Eisen ◽  
...  

ABSTRACT Ecological communities are regulated by the flow of energy through environments. Energy flow is typically limited by access to photosynthetically active radiation (PAR) and oxygen concentration (O2). The microbial mats growing on the bottom of Lake Fryxell, Antarctica, have well-defined environmental gradients in PAR and (O2). We analyzed the metagenomes of layers from these microbial mats to test the extent to which access to oxygen and light controls community structure. We found variation in the diversity and relative abundances of Archaea, Bacteria and Eukaryotes across three (O2) and PAR conditions: high (O2) and maximum PAR, variable (O2) with lower maximum PAR, and low (O2) and maximum PAR. We found distinct communities structured by the optimization of energy use on a millimeter-scale across these conditions. In mat layers where (O2) was saturated, PAR structured the community. In contrast, (O2) positively correlated with diversity and affected the distribution of dominant populations across the three habitats, suggesting that meter-scale diversity is structured by energy availability. Microbial communities changed across covarying gradients of PAR and (O2). The comprehensive metagenomic analysis suggests that the benthic microbial communities in Lake Fryxell are structured by energy flow across both meter- and millimeter-scales.


Geobiology ◽  
2019 ◽  
Vol 17 (5) ◽  
pp. 551-563 ◽  
Author(s):  
Emily D. Matys ◽  
Tyler Mackey ◽  
Christen Grettenberger ◽  
Elliott Mueller ◽  
Anne Jungblut ◽  
...  

2019 ◽  
Author(s):  
Megan L. Dillon ◽  
Ian Hawes ◽  
Anne D. Jungblut ◽  
Tyler J. Mackey ◽  
Jonathan A. Eisen ◽  
...  

AbstractEcological communities are commonly thought to be controlled by the dynamics of energy flow through environments. Two of the most important energetic constraints on all communities are photosynthetically active radiation (PAR) and oxygen concentration ([O2]). Microbial mats growing on the bottom of Lake Fryxell, Antarctica, span environmental gradients in PAR and [O2], which we used to test the extent to which each controls community structure. Metagenomic analyses showed variation in the diversity and relative abundances of Archaea, Bacteria, and Eukaryotes across three [O2] and PAR conditions. Where [O2] saturated the mats or was absent from the overlying water, PAR structured the community. Where [O2] varied within mats, microbial communities changed across covarying PAR and [O2] gradients. Diversity negatively correlated with [O2] and PAR through mat layers in each habitat suggesting that, on the millimeter-scale, communities are structured by the optimization of energy use. In contrast, [O2] positively correlated with diversity and affected the distribution of dominant populations across the three habitats, suggesting that meter-scale diversity is structured by energy availability. The benthic microbial communities in Lake Fryxell are thus structured by energy flow in a scale-dependent manner.


2019 ◽  
Vol 10 ◽  
Author(s):  
Jennifer M. Baker ◽  
Nicole A. Vander Schaaf ◽  
Anna M. G. Cunningham ◽  
Anna C. Hang ◽  
Chelsea L. Reeves ◽  
...  

Life ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 37 ◽  
Author(s):  
Laurie Connell ◽  
Benjamin Segee ◽  
Regina Redman ◽  
Russell Rodriguez ◽  
Hubert Staudigel

In this work, we explore the biodiversity of culturable microfungi from the water column of a permanently ice-covered lake in Taylor Valley, Antarctica from austral field seasons in 2003, 2008 and 2010, as well as from glacial stream input (2010). The results revealed that there was a sharp decline in total culturable fungal abundance between 9 and 11 m lake depth with a concurrent shift in diversity. A total of 29 species were identified from all three water sources with near even distribution between Ascomycota and Basidomycota (15 and 14 respectively). The most abundant taxa isolated from Lake Fryxell in 2008 were Glaciozyma watsonii (59%) followed by Penicillium spp. (10%), both of which were restricted to 9 m and above. Although seven species were found below the chemocline of 11 m in 2008, their abundance comprised only 10% of the total culturable fungi. The taxa of isolates collected from glacial source input streams had little overlap with those found in Lake Fryxell. The results highlight the spatial discontinuities of fungal populations that can occur within connected oligotrophic aquatic habitats.


Sign in / Sign up

Export Citation Format

Share Document