scholarly journals Chemoorganotrophic Bacteria From Lake Fryxell, Antarctica, Including Pseudomonas Strain LFY10, a Cold-Adapted, Halotolerant Bacterium Useful in Teaching Labs

2019 ◽  
Vol 10 ◽  
Author(s):  
Jennifer M. Baker ◽  
Nicole A. Vander Schaaf ◽  
Anna M. G. Cunningham ◽  
Anna C. Hang ◽  
Chelsea L. Reeves ◽  
...  
2006 ◽  
Vol 40 (11) ◽  
pp. 8
Author(s):  
MIRIAM E. TUCKER
Keyword(s):  

Author(s):  
Quynh DangThu ◽  
Thu-Thuy Nguyen ◽  
Sei-Heon Jang ◽  
ChangWoo Lee

Abstract Sugar alcohols (polyols) have important roles as nutrients, anti-freezing agents, and scavengers of free radicals in cold-adapted bacteria, but the characteristics of polyol dehydrogenases in cold-adapted bacteria remain largely unknown. In this study, based on the observation that a cold-adapted bacterium Pseudomonas mandelii JR-1 predominantly utilized D-sorbitol as its carbon source, among the four polyols examined (D-galactitol, D-mannitol, D-sorbitol, or D-xylitol), we cloned and characterized a sorbitol dehydrogenase (SDH, EC 1.1.1.14) belonging to the short-chain dehydrogenase/reductase family from this bacterium (the SDH hereafter referred to as PmSDH). PmSDH contained Asn111, Ser140, Tyr153, and Lys157 as catalytic active site residues and existed as a ∼67 kDa dimer in size-exclusion chromatography. PmSDH converted D-sorbitol to D-fructose using NAD+ as a coenzyme and, vice versa, D-fructose to D-sorbitol using NADH as a coenzyme. PmSDH maintained its conformational flexibility, secondary and tertiary structures, and thermal stability at 4–25°C. At 40°C, PmSDH was rapidly denatured. These results indicate that PmSDH, which has a flexible structure and a high catalytic activity at colder temperatures, is well-suited to sorbitol utilization in the cold-adapted bacterium P. mandelii JR-1.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 497
Author(s):  
Rafał Ogórek ◽  
Mateusz Speruda ◽  
Justyna Borzęcka ◽  
Agata Piecuch ◽  
Magdalena Cal

Most underground ecosystems are heterotrophic, fungi in these objects are dispersed in the air in the form of spores, and they may be potentially hazardous to mammals. Research in underground sites has focused on mesophilic airborne fungi and only a few concerned cold-adapted species. Therefore, the goal of our research was the first report of psychrophilic and psychrotolerant aeromycota in the Brestovská Cave using culture-based techniques with genetic and phenotypic identification. Plates with PDA medium containing sampled biological material were incubated at 8 ± 0.5 °C. The density of mycobiota inside the cave ranged from 37.4 to 71 CFU 1 m−3 of air and 63.3 CFU 1 m−3 of air outside the cave. Thus, the level of fungal spores did not exceed the standards for the mycological quality of the air. A total of 18 species were isolated during the study, and some species may be potentially dangerous to people with weakened immune system. All fungal species were present inside the cave and only seven of them were outside. Cladosporium cladosporioides dominated in the external air samples and Mortierella parvispora was cultured most frequently from internal air samples. To our knowledge, this is the first discovery of the fungal species such as Coniothyrium pyrinum, Cystobasidium laryngis, Filobasidium wieringae, Leucosporidium drummii, M. parvispora, Mrakia blollopis, Nakazawaea holstii, and Vishniacozyma victoriae in the air inside the underground sites. Moreover, C. pyrinum, C. laryngis, L. drummii, M. blollopis, and N. holstii have never been detected in any component of the underground ecosystems. There are possible reasons explaining the detection of those species, but global warming is the most likely.


Sign in / Sign up

Export Citation Format

Share Document