scholarly journals Energetic and Environmental Constraints on the Community Structure of Benthic Microbial Mats in Lake Fryxell, Antarctica

2020 ◽  
Vol 96 (2) ◽  
Author(s):  
Megan L Dillon ◽  
Ian Hawes ◽  
Anne D Jungblut ◽  
Tyler J Mackey ◽  
Jonathan A Eisen ◽  
...  

ABSTRACT Ecological communities are regulated by the flow of energy through environments. Energy flow is typically limited by access to photosynthetically active radiation (PAR) and oxygen concentration (O2). The microbial mats growing on the bottom of Lake Fryxell, Antarctica, have well-defined environmental gradients in PAR and (O2). We analyzed the metagenomes of layers from these microbial mats to test the extent to which access to oxygen and light controls community structure. We found variation in the diversity and relative abundances of Archaea, Bacteria and Eukaryotes across three (O2) and PAR conditions: high (O2) and maximum PAR, variable (O2) with lower maximum PAR, and low (O2) and maximum PAR. We found distinct communities structured by the optimization of energy use on a millimeter-scale across these conditions. In mat layers where (O2) was saturated, PAR structured the community. In contrast, (O2) positively correlated with diversity and affected the distribution of dominant populations across the three habitats, suggesting that meter-scale diversity is structured by energy availability. Microbial communities changed across covarying gradients of PAR and (O2). The comprehensive metagenomic analysis suggests that the benthic microbial communities in Lake Fryxell are structured by energy flow across both meter- and millimeter-scales.

2019 ◽  
Author(s):  
Megan L. Dillon ◽  
Ian Hawes ◽  
Anne D. Jungblut ◽  
Tyler J. Mackey ◽  
Jonathan A. Eisen ◽  
...  

AbstractEcological communities are commonly thought to be controlled by the dynamics of energy flow through environments. Two of the most important energetic constraints on all communities are photosynthetically active radiation (PAR) and oxygen concentration ([O2]). Microbial mats growing on the bottom of Lake Fryxell, Antarctica, span environmental gradients in PAR and [O2], which we used to test the extent to which each controls community structure. Metagenomic analyses showed variation in the diversity and relative abundances of Archaea, Bacteria, and Eukaryotes across three [O2] and PAR conditions. Where [O2] saturated the mats or was absent from the overlying water, PAR structured the community. Where [O2] varied within mats, microbial communities changed across covarying PAR and [O2] gradients. Diversity negatively correlated with [O2] and PAR through mat layers in each habitat suggesting that, on the millimeter-scale, communities are structured by the optimization of energy use. In contrast, [O2] positively correlated with diversity and affected the distribution of dominant populations across the three habitats, suggesting that meter-scale diversity is structured by energy availability. The benthic microbial communities in Lake Fryxell are thus structured by energy flow in a scale-dependent manner.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexis M. Walker ◽  
Mary Beth Leigh ◽  
Sarah L. Mincks

The paradigm of tight pelagic-benthic coupling in the Arctic suggests that current and future fluctuations in sea ice, primary production, and riverine input resulting from global climate change will have major impacts on benthic ecosystems. To understand how these changes will affect benthic ecosystem function, we must characterize diversity, spatial distribution, and community composition for all faunal components. Bacteria and archaea link the biotic and abiotic realms, playing important roles in organic matter (OM) decomposition, biogeochemical cycling, and contaminant degradation, yet sediment microbial communities have rarely been examined in the North American Arctic. Shifts in microbial community structure and composition occur with shifts in OM inputs and contaminant exposure, with implications for shifts in ecological function. Furthermore, the characterization of benthic microbial communities provides a foundation from which to build focused experimental research. We assessed diversity and community structure of benthic prokaryotes in the upper 1 cm of sediments in the southern Beaufort Sea (United States and Canada), and investigated environmental correlates of prokaryotic community structure over a broad spatial scale (spanning 1,229 km) at depths ranging from 17 to 1,200 m. Based on hierarchical clustering, we identified four prokaryotic assemblages from the 85 samples analyzed. Two were largely delineated by the markedly different environmental conditions in shallow shelf vs. upper continental slope sediments. A third assemblage was mainly comprised of operational taxonomic units (OTUs) shared between the shallow shelf and upper slope assemblages. The fourth assemblage corresponded to sediments receiving heavier OM loading, likely resulting in a shallower anoxic layer. These sites may also harbor microbial mats and/or methane seeps. Substructure within these assemblages generally reflected turnover along a longitudinal gradient, which may be related to the quantity and composition of OM deposited to the seafloor; bathymetry and the Mackenzie River were the two major factors influencing prokaryote distribution on this scale. In a broader geographical context, differences in prokaryotic community structure between the Beaufort Sea and Norwegian Arctic suggest that benthic microbes may reflect regional differences in the hydrography, biogeochemistry, and bathymetry of Arctic shelf systems.


Author(s):  
Philips O. Akinwole ◽  
Jinjun Kan ◽  
Louis A. Kaplan ◽  
Robert H. Findlay

Microorganisms in streams drive many biogeochemical reactions of global significance, including nutrient cycling and energy flow; yet, the mechanisms responsible for the distribution and composition of streambed microbial communities are not well known. We sampled sediments from multiple streams in two watersheds (Neversink River [New York] and White Clay Creek [WCC; Pennsylvania] watersheds) and measured microbial biomass and total microbial and bacterial community structures using phospholipid and molecular methods.


2020 ◽  
Vol 9 (1) ◽  
pp. 62
Author(s):  
Aysha Kamran ◽  
Kathrin Sauter ◽  
Andreas Reimer ◽  
Theresa Wacker ◽  
Joachim Reitner ◽  
...  

(1) Background: Microbial communities in terrestrial, calcifying high-alkaline springs are not well understood. In this study, we investigate the structure and composition of microbial mats in ultrabasic (pH 10–12) serpentinite springs of the Voltri Massif (Italy). (2) Methods: Along with analysis of chemical and mineralogical parameters, environmental DNA was extracted and subjected to analysis of microbial communities based upon next-generation sequencing. (3) Results: Mineral precipitation and microbialite formation occurred, along with mat formation. Analysis of the serpentinite spring microbial community, based on Illumina sequencing of 16S rRNA amplicons, point to the relevance of alkaliphilic cyanobacteria, colonizing carbonate buildups. Cyanobacterial groups accounted for up to 45% of all retrieved sequences; 3–4 taxa were dominant, belonging to the filamentous groups of Leptolyngbyaceae, Oscillatoriales, and Pseudanabaenaceae. The cyanobacterial community found at these sites is clearly distinct from creek water sediment, highlighting their specific adaptation to these environments.


2017 ◽  
Vol 77 (1) ◽  
Author(s):  
Svein Birger Wærvågen ◽  
Tom Andersen

Lake Gjerstadvann is a dimictic, oligotrophic, slightly acidified boreal lake in southern Norway (northwest Europe). The planktonic rotifer community of this lake was studied quantitatively during one year in order to investigate the impacts of the local environment and biotic interactions on seasonal succession and habitat selection. Pure suspension feeders (mainly Keratella spp., Conochilus spp., and Kellicottia longispina) together with raptorial graspers or specialised feeders (mainly Polyarthra spp. and Collotheca spp.) dominated the rotifer community over prolonged periods, whereas carnivorous/omnivorous species (mainly Asplanchna priodonta) were extremely uncommon. Low bicarbonate buffering capacity resulted in a distinctive seasonal oscillating pH between 5.0 and 5.6, defining a special acid-transition lake category. The pH values were highest in the productive period during summer, and lowest during ice break-up coinciding with the peak reactive aluminium concentrations of 250-300 mg L-1. As in typical Norwegian boreal perch lakes, the most abundant cladoceran was Bosmina longispina due to perch predation on the genus Daphnia. Rotifer community structure was significantly related to temperature and oxygen (P=0.001 and P=0.022), illustrating the important effects of the seasonal cycle and vertical density stratification. The most significant competition indicator species were B. longispina and Eudiaptomus gracilis (both with P=0.001). A variance partitioning indicated that 14% of the total community composition variance could only be explained by biotic interactions, while 19% of the variance could be attributed to environmental gradients. Of the variance, 23% could not be resolved between biotic interactions and environmental gradients, while a residual of 44% was not explainable by any of the variables. Acid conditions alone cannot account for all the observed changes in the rotifer community of this lake with low humic content, since resource limitation and food competition are also important factors shaping rotifer population dynamics and the community structure.


2004 ◽  
Vol 61 (8) ◽  
pp. 1493-1502 ◽  
Author(s):  
R K Johnson ◽  
M L Ostrofsky

Sediment concentrations of total and available nitrogen (N), phosphorus (P), and potassium (K) and organic matter from the littoral zone of Lake Pleasant, Pennsylvania, were highly variable. Only organic matter and total N were correlated with depth, however. This result suggests the existence of more complex environmental gradients than the prevailing paradigm of monotonic changes in sediment characteristics with increasing depth. The spatial heterogeneity of submersed aquatic plant communities was significantly correlated with depth, and available N and P. Canonical correspondence analysis demonstrated that these three factors explained 38% of the variance in community structure. Other sediment characteristics (available K, organic matter, and total N, P and K) were not significant by themselves, but all variables combined explained 63% of community-structure variance. Cluster analysis identified species or groups of species typical of endpoints on the depth versus nutrient axes. Myriophyllum exalbescens was typical of deep sites with relatively nutrient-rich sediments, whereas deep nutrient-poor sites were dominated by Vallisneria americana and Megalodonta beckii. Shallow nutrient-rich sites were dominated by several species of Potamogeton and Elodea canadensis, and shallow nutrient-poor sites were dominated by Heteranthera dubia and Najas flexilis. These results demonstrate the importance of sediment characteristics in determining macrophytes' community structure within lakes.


Sign in / Sign up

Export Citation Format

Share Document