scholarly journals Soil Microbes Transform Inorganic Carbon into Organic Carbon by Dark Fixation Pathways in Desert Soil

2020 ◽  
Author(s):  
Zhen Liu ◽  
Yuqing Zhang ◽  
Yanfei Sun ◽  
Wei Feng ◽  
Zongrui Lai ◽  
...  
2016 ◽  
Vol 7 (4) ◽  
pp. 953-968 ◽  
Author(s):  
Fanny Langerwisch ◽  
Ariane Walz ◽  
Anja Rammig ◽  
Britta Tietjen ◽  
Kirsten Thonicke ◽  
...  

Abstract. Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 %) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20 % (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60 % due to deforestation. The discharge of organic carbon to the ocean will be reduced by about 40 % under the most severe deforestation and climate change scenario. These changes would have local and regional consequences on the carbon balance and habitat characteristics in the Amazon basin itself as well as in the adjacent Atlantic Ocean.


2008 ◽  
Vol 5 (6) ◽  
pp. 1615-1623 ◽  
Author(s):  
S. Fiedler ◽  
B. S. Höll ◽  
A. Freibauer ◽  
K. Stahr ◽  
M. Drösler ◽  
...  

Abstract. Numerous studies have dealt with carbon (C) contents in Histosols, but there are no studies quantifying the relative importance of the individual C components in pore waters. For this study, measurements were taken of all the carbon components (particulate organic carbon, POC; dissolved organic carbon, DOC; dissolved inorganic carbon, DIC; dissolved methane, CH4) in the soil pore water of calcareous fens under three different water management regimes (re-wetted, deeply and moderately drained). Pore water was collected weekly or biweekly (April 2004 to April 2006) at depths between 10 and 150 cm. The main results obtained were: (1) DIC (94–280 mg C l−1) was the main C-component. (2) POC and DOC concentrations in the pore water (14–125 mg C l−1 vs. 41–95 mg C l−1) were pari passu. (3) Dissolved CH4 was the smallest C component (0.005–0.9 mg C l−1). Interestingly, about 30% of the POM particles were colonized by microbes indicating that they are active in the internal C turnover. Certainly, both POC and DOC fractions are essential components of the C budget of peatlands. Furthermore, dissolved CO2 in all forms of DIC appears to be an important part of peatland C-balance.


2009 ◽  
Vol 104 (2) ◽  
pp. 263-269 ◽  
Author(s):  
Xiao Gang Li ◽  
Yin Ke Li ◽  
Feng Min Li ◽  
Qifu Ma ◽  
Ping Liang Zhang ◽  
...  

1973 ◽  
Vol 30 (10) ◽  
pp. 1441-1445 ◽  
Author(s):  
Michael P. Stainton

A simple, rapid method for determining dissolved inorganic carbon in water is described. A 20-cm3 sample of water is drawn into a 50-cm3 polypropylene syringe and acidified by injection of 1 cm3 of dilute sulphuric acid. Twenty-nine cubic centimeters of helium at atmospheric pressure is injected into the syringe followed by 10 sec of manual agitation to partition CO2 between gas and liquid phase. The gas phase containing 60% of CO2 from the sample is then analyzed by gas chromatography. This method has been used to determine dissolved inorganic and organic carbon in Canadian Shield waters and to determine total carbonates in sediments.


Sign in / Sign up

Export Citation Format

Share Document