scholarly journals Ship RBF neural network sliding mode PID heading control

2022 ◽  
Vol 355 ◽  
pp. 03064
Author(s):  
Jiaming Yu ◽  
Renxiang Bu ◽  
Liangqi Li

In view of the inherent non-linearity, complexity, susceptibility to external wind, wave, and current interference of under-driven ships, and the difficulty of adjusting and adjusting control parameters, to improve the performance of ship’s autopilot, a kind of RBF neural network sliding mode variable structure PID controller is designed. Traditional PID control is sensitive to parameter changes, online tuning is difficult, and easy to overshoot. In order to solve this problem, combining the variable structure characteristics of PID, a differential compensation term is added to the integral term to convert the PID control parameters into three parameters with more obvious physical meanings, and then combined with the RBF neural network learning and identification function to realize online tuning and adaptive control of ship control parameters. Using MATLAB software to simulate the container ship “MV KOTA SEGAR” MMG model shows that the designed RBF neural network sliding mode PID controller can effectively eliminate the ship’s lateral deviation caused by external interference such as wind, waves, currents, etc., with high control accuracy,robustness and strong adaptability.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xu Ma ◽  
Jinpeng Zhou ◽  
Xu Zhang ◽  
Yang Qi ◽  
Xiaochen Huang

In interventional surgery, the manual operation of the catheter is not accurate. It is necessary to operate the catheter skillfully and effectively to protect the surgeon from radiation injury. The purpose of this paper is to design a new robot catheter operating system, which can help surgeons to complete the operation with high mechanical precision. On the basis of the original mechanical structure—real catheter, the operation information of the main end operator is collected. After the information is collected, the control algorithm of the system is improved, and the BP neural network is combined with the traditional PID controller to adjust the PID control parameters more effectively and intelligently so that the motor can reflect the output of the controller better and faster. The feasibility and superiority of the BP neural network PID controller are verified by simulation experiments.


Author(s):  
Renqiang Wang ◽  
Qinrong Li ◽  
Shengze Miao ◽  
Keyin Miao ◽  
Hua Deng

Abstract: The purpose of this paper was to design an intelligent controller of ship motion based on sliding mode control with a Radial Basis Function (RBF) neural network optimized by the genetic algorithm and expansion observer. First, the improved genetic algorithm based on the distributed genetic algorithm with adaptive fitness and adaptive mutation was used to automatically optimize the RBF neural network. Then, with the compensation designed by the RBF neural network, anti-saturation control was realized. Additionally, the intelligent control algorithm was introduced by Sliding Mode Control (SMC) with the stability theory. A comparative study of sliding mode control integrated with the RBF neural network and proportional–integral–derivative control combined with the fuzzy optimization model showed that the stabilization time of the intelligent control system was 43.75% faster and the average overshoot was reduced by 52% compared with the previous two attempts. Background: It was known that the Proportional-Integral-Derivative (PID) control and self-adaptation control cannot really solve the problems of frequent disturbance from external wind and waves, as well as the problems with ship nonlinearity and input saturation. So, the previous ship motion controller should be transformed by advanced intelligent technology, on the basis of referring to the latest relevant patent design methods. Objective: An intelligent controller of ship motion was designed based on optimized Radial Basis Function Neural Network (RBFNN) in the presence of non-linearity, uncertainty, and limited input. Methods: The previous ship motion controller was remodeled based on Sliding Mode Control (SMC) with RBFNN optimized by improved genetic algorithm and expansion observer. The intelligent control algorithm integrated with genetic neural network solved the problem of system model uncertainty, limited control input, and external interference. Distributed genetic with adaptive fitness and adaptive mutation method guaranteed the adequacy of search and the global optimal convergence results, which enhanced the approximation ability of RBFNN. With the compensation designed by the optimized RBFNN, it was realized anti-saturation control. The chattering caused by external disturbance in SMC controller was reduced by the expansion observer. Results: A comparative study with RBFNN-SMC control and fuzzy-PID control, the stabilization time of the intelligent control system was 43.75% faster, the average overshoot was reduced by 52%, compared to the previous two attempts. Conclusion: The intelligent control algorithm succeed in dealing with the problems of nonlinearity, uncertainty, input saturation, and external interference. The intelligent control algorithm can be applied into research and development ship steering system, which would be created a new patent.


2021 ◽  
Vol 11 (6) ◽  
pp. 2685
Author(s):  
Guojin Pei ◽  
Ming Yu ◽  
Yaohui Xu ◽  
Cui Ma ◽  
Houhu Lai ◽  
...  

A compliant constant-force actuator based on the cylinder is an important tool for the contact operation of robots. Due to the nonlinearity and time delay of the pneumatic system, the traditional proportional–integral–derivative (PID) method for constant force control does not work so well. In this paper, an improved PID control method combining a backpropagation (BP) neural network and the Smith predictor is proposed. Through MATLAB simulation and experimental validation, the results show that the proposed method can shorten the maximum overshoot and the adjustment time compared with traditional the PID method.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 831
Author(s):  
Izzat Al-Darraji ◽  
Dimitrios Piromalis ◽  
Ayad A. Kakei ◽  
Fazal Qudus Khan ◽  
Milos Stojemnovic ◽  
...  

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d'Alembert principle. Secondly, an adaptive robust controller, based on a sliding mode, is designed to manipulate the problem of uncertainties, including modeling errors. Last, a higher stability controller, based on the RBF neural network, is implemented with the adaptive robust controller to stabilize the ARAs, avoiding modeling errors and unknown payload issues. The novelty of the proposed design is that it takes into account high nonlinearities, coupling control loops, high modeling errors, and disturbances due to payloads and environmental conditions. The model was evaluated by the simulation of a case study that includes the two proposed controllers and ARA trajectory tracking. The simulation results show the validation and notability of the presented control algorithm.


2014 ◽  
Vol 998-999 ◽  
pp. 943-946
Author(s):  
Jing Liu ◽  
Guo Xin Wang

As the earliest practical controller, PID controller has more than 50 years of history, and it is still the most widely used and most common industrial controllers. PID controller is simple to understand and use, without a prerequisite for an accurate model of the physical system, thus become the most popular, the most common controller. The reason why PID controller is the first developed one is that its simple algorithm, robustness and high reliability. It is widely used in process control and motion control, especially for accurate mathematical model that can be established deterministic control system. But the conventional PID controller tuning parameters are often poor performance, poor adaptability to the operating environment. The neural network has a strong nonlinear mapping ability, competence, self-learning ability of associative memory, and has a viable quantities of information processing methods and good fault tolerance.


Robotica ◽  
2007 ◽  
Vol 25 (4) ◽  
pp. 467-477 ◽  
Author(s):  
J. Lin ◽  
Z.-Z. Huang

SUMMARYThis research focuses on the issue of dynamic modeling and controlling a robotic manipulator attached to a compliant base. Such a system is known under the name macro–micro system, characterized by the number of control actuators being less than the number of state variables. The equations of motion for a two-link planar elbow arm mounted on an oscillatory base has been presented in this investigation. In order to study the sensitivity of tuning the PID parameters to achieve the desired performance, the Grey relational analysis has first been proposed. Therefore, the aim of this work is to apply Grey theory to optimize parameters for partial states feedback of a PID controller for such a structure. The experimental results of the proposed methodology also show that it is technically and economically feasible to develop a low-cost, reliable, automatic, less time-consuming controller for robotics mounted on oscillatory bases.


Sign in / Sign up

Export Citation Format

Share Document