scholarly journals Transformed notochordal cells trigger chronic wounds destabilizing the vertebral column and bone homeostasis

2021 ◽  
pp. dmm.047001
Author(s):  
Paco López-Cuevas ◽  
Luke Deane ◽  
Yushi Yang ◽  
Chrissy L Hammond ◽  
Erika Kague

Notochordal cells play a pivotal role in vertebral column patterning, contributing to the formation of the inner architecture of intervertebral discs (IVDs). Their disappearance during development has been associated with reduced repair capacity and IVD degeneration. Notochord cells can give rise to chordomas, a highly invasive bone cancer associated with late diagnosis. Understanding the impact of neoplastic cells during development and on the surrounding vertebral column could open avenues for earlier intervention and therapeutics. We investigated the impact of transformed notochord cells in the zebrafish skeleton using a RAS expressing line in the notochord under the control of the Kita promoter, with the advantage of adulthood endurance. Transformed cells caused damage in the notochord and destabilised the sheath layer triggering a wound repair mechanism, with enrolment of sheath cells (col9a2+) and expression of wt1b, similar to induced notochord wounds. Moreover, increased recruitment of neutrophils and macrophages, displaying abnormal behaviour in proximity to the notochord sheath and transformed cells, supported parallels between chordomas, wound and inflammation. Cancerous notochordal cells interfere with differentiation of sheath cells to form chordacentra domains leading to fusions and vertebral clefts during development. Adults displayed IVD irregularities reminiscent of degeneration; reduced bone mineral density, increased osteoclast activity; while disorganised osteoblasts and collagen indicate impaired bone homeostasis. By depleting inflammatory cells, we abrogated chordoma development and rescued the skeletal features of the vertebral column. Therefore, we showed that transformed notochord cells alter the skeleton during life, causing a wound-like phenotype and activating chronic wound response, suggesting parallels between chordoma, wound, IVD degeneration and inflammation, highlighting inflammation as a promising target for future therapeutics.

2020 ◽  
Author(s):  
Paco Lopez-Cuevas ◽  
Luke Deane ◽  
Yushi Yang ◽  
Chrissy L Hammond ◽  
Erika Kague

Notochordal cells play a pivotal role in vertebral column patterning, contributing to the formation of the inner architecture of intervertebral discs (IVDs). Their disappearance during development has been associated with reduced repair capacity and IVD degeneration. Notochordal remnants are known to cause chordomas, a highly invasive bone cancer associated with late diagnosis. Understanding the impact of neoplastic cells during development and on the surrounding vertebral column could open avenues for earlier intervention and therapeutics. We investigated the impact of transformed notochord cells in the zebrafish skeleton using a RAS expressing line in the notochord under the control of the Kita promoter, with the advantage of adulthood endurance. Transformed cells caused damage in the notochord and destabilised the sheath layer triggering a wound repair mechanism, with enrolment of sheath cells (col9a2+) and expression of wt1b, similar to induced notochord wounds. Moreover, increased recruitment of neutrophils and macrophages, displaying abnormal behaviour in proximity to the notochord sheath and transformed cells, supported parallels between chordomas, wound and inflammation. Cancerous notochordal cells interfere with differentiation of sheath cells to form chordacentra domains leading to fusions and vertebral clefts during development. Adults displayed IVD irregularities reminiscent of degeneration; reduced bone mineral density, increased osteoclast activity; while disorganised osteoblasts and collagen indicate impaired bone homeostasis. By depleting inflammatory cells, we abrogated chordoma development and rescued the skeletal features of the vertebral column. Therefore, we showed that transformed notochord cells alter the skeleton during life, causing a wound-like phenotype and activating chronic wound response, suggesting parallels between chordoma, wound, IVD degeneration and inflammation, highlighting inflammation as a promising target for future therapeutics.


Author(s):  
Raffaele Giannattasio ◽  
Giuseppe Lisco ◽  
Vito Angelo Giagulli ◽  
Silvio Settembrini ◽  
Giovanni De Pergola ◽  
...  

Background: Endocrine Disrupting Chemicals (EDCs) are ubiquitous and may significantly contribute in environmental pollution, thus contaminating humans and wildlife. Environmental pollutants could interfere with bone homeostasis by means of different mechanisms, which include hormonal imbalance, direct osteoblasts toxicity and enanchment of osteoclasts activity, thus leading to osteopenia or osteoporosis. Among these, bisphenols, dioxins, polycyclic aromatic hydrocarbons, polychlorobiphenyls, poly- and perfluoroalkyls, phthalates, parabens, organotins and cadmium may play a role in bone distuption. Methods: PubMed/MEDLINE, ISI-web of knowledge and Google scholar databases were searched for medical subject headings terms and free-text word related to the aforementioned classes of chemicals and bone metabolism and remodelling for better clarifying and understanding the main mechanisms of bone disruption. Results: Several of EDCs act as xenoestrogens. Considering that estrogens play a significant role in regulating bone remodeling, most of these chemicals generate hormonal imbalance with possible detrimental consequences on bone tissue structure and its mechanical and non-mechanical properties. Discussion: A lot of evidences about bone distruptors came from in vitro studies or animal models, and conduct to equivocal results. In addition, a few data derived form humans and most of these data focused on the impact of EDCs on bone mineral density without considering their influence on long-term fracture risk. Moreover, it should be taken into account that humans are exposed to a mixture of EDCs and the final effect on bone metabolism might be the result of either a synergism or antagonist effects among them. Age of first exposure, cumulative dose exposure over time, and the usually observed non-monotonic dose-response curve for EDCs should be considered as other important variable influencing the final effect on bone metabolism. Conclusion: Taking into account these variables, observational studies are needed to better analyze this issue both for echological purpose and to preserve bone health.


2019 ◽  
Vol 17 (6) ◽  
pp. 610-617 ◽  
Author(s):  
Giovanna Muscogiuri ◽  
Luigi Barrea ◽  
Barbara Altieri ◽  
Carolina Di Somma ◽  
Harjit pal Bhattoa ◽  
...  

Vitamin D and calcium are considered crucial for the treatment of bone diseases. Both vitamin D and calcium contribute to bone homeostasis but also preserve muscle health by reducing the risk of falls and fractures. Low vitamin D concentrations result in secondary hyperparathyroidism and contribute to bone loss, although the development of secondary hyperparathyroidism varies, even in patients with severe vitamin D deficiency. Findings from observational studies have shown controversial results regarding the association between bone mineral density and vitamin D/calcium status, thus sparking a debate regarding optimum concentrations of 25-hydroxyvitamin D and calcium for the best possible skeletal health. Although most of the intervention studies reported a positive effect of supplementation with calcium and vitamin D on bone in patients with osteoporosis, this therapeutic approach has been a matter of debate regarding potential side effects on the cardiovascular (CV) system. Thus, the aim of this review is to consider the current evidence on the physiological role of vitamin D and calcium on bone and muscle health. Moreover, we provide an overview on observational and interventional studies that investigate the effect of vitamin D and calcium supplementation on bone health, also taking into account the possible CV side-effects. We also provide molecular insights on the effect of calcium plus vitamin D on the CV system.


Author(s):  
MINAKSHI JOSHI ◽  
SHRADHA BISHT ◽  
MAMTA F. SINGH

Thyroid hormone serves as an indispensable component for the optimum functioning of various biological systems. They curb body’s metabolism, regulates the estrogen level, regulates bone turnover, essential for skeletal development and mineralization. Within the scope of knowledge, it is intimately familiar that thyroid disorders have widespread systemic manifestations, among which in hypothyroidism, even though elevated TSH (thyroid-stimulating hormone) may reduce estrogen level which in turn stimulates osteoclasts and thus cause osteoporosis, while hyperthyroidism accelerates bone turnover. Hypothyroidism does not directly interfere with the skeletal integrity, but treatment with levothyroxine for the suppression of TSH to bring the hypothyroid patient to euthyroid state for a long haul; lead to simultaneous reduction in bone mass and in (bone mineral density) BMD. After the initial relevation of the correlation between thyroid disorders and osteoporosis in numerous studies have emphasized that both hypo and hyperthyroidism either directly or indirectly affects the bone mineral density or leads to the progression of osteoporosis. Therefore the present study is aimed and so designed to review all the possible associations between them and the impact of thyroid disorders on estrogen level and bone mineral density. The main findings of this review indicate that both excesses as well as deficiency of thyroid hormone can be potentially deleterious for bone tissue.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ting Chen ◽  
Haiying Wu ◽  
Chenxi Zhang ◽  
Jiarong Feng ◽  
Linqi Chen ◽  
...  

Background. Bone mineral density quantitative trait locus 18 (BMND18, OMIM #300910) is a type of early-onset osteogenesis imperfecta (OI) caused by loss-of-function mutations in the PLS3 gene, which encodes plastin-3, a key protein in the formation of actin bundles throughout the cytoskeleton. Here, we report a patient with PLS3 mutation caused BMND18 and evaluated all the reported disease-causing mutations by bioinformatic analysis. Methods. Targeted gene sequencing was performed to find the disease-causing mutation in our patient. Bioinformatic analyses mainly including homology modelling and molecular dynamics stimulation were conducted to explore the impact of the previously reported mutations on plastin-3. Results. Gene sequencing showed a novel nonsense mutation (c.745G > T, p.E249X), which locates at a highly conserved region containing residues p.240–266 (LOOP-1) in the PLS3 gene. Further bioinformatic analyses of the previously reported mutations revealed that LOOP-1 is predicted to physically connect the calponin-homology 1 (CH1) and CH2 domains of the ABD1 fragment and spatially locates within the interface of ABD1 and ABD2. It is crucial to the conformation transition and actin-binding function of plastin-3. Conclusions. This report identified a novel mutation that truncates the PLS3 gene. Moreover, bioinformatic analyses of the previous reported mutations in PLS3 gene lead us to find a critical LOOP-1 region of plastin-3 mutations at which may be detrimental to the integral conformation of plastin-3 and thus affect its binding to actin filament.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stefana Catalina Bilha ◽  
Letitia Leustean ◽  
Cristina Preda ◽  
Dumitru D. Branisteanu ◽  
Laura Mihalache ◽  
...  

Abstract Background Despite the increased fracture risk, bone mineral density (BMD) is variable in type 1 (T1D) and type 2 (T2D) diabetes mellitus. We aimed at comparing independent BMD predictors in T1D, T2D and control subjects, respectively. Methods Cross-sectional case-control study enrolling 30 T1D, 39 T2D and 69 age, sex and body mass index (BMI) – matched controls that underwent clinical examination, dual-energy X-ray absorptiometry (BMD at the lumbar spine and femoral neck) and serum determination of HbA1c and parameters of calcium and phosphate metabolism. Results T2D patients had similar BMD compared to T1D individuals (after adjusting for age, BMI and disease duration) and to matched controls, respectively. In multiple regression analysis, diabetes duration – but not HbA1c- negatively predicted femoral neck BMD in T1D (β= -0.39, p = 0.014), while BMI was a positive predictor for lumbar spine (β = 0.46, p = 0.006) and femoral neck BMD (β = 0.44, p = 0.007) in T2D, besides gender influence. Age negatively predicted BMD in controls, but not in patients with diabetes. Conclusions Long-standing diabetes and female gender particularly increase the risk for low bone mass in T1D. An increased body weight partially hinders BMD loss in T2D. The impact of age appears to be surpassed by that of other bone regulating factors in both T1D and T2D patients.


2021 ◽  
Vol 17 ◽  
Author(s):  
Gehan Elolemy ◽  
Waleed Hassan ◽  
Mohamed Nasr ◽  
Eman Baraka

Objectives: was to assess the frequency of hypovitaminosis D in patients with ankylosing spondylitis (AS) compared to healthy controls and to evaluate its association with disease activity, structural damage and bone mineral density (BMD). Methods: Serum 25(OH) D in 30 AS male patients was compared to 30 matched healthy controls. AS disease activity was assessed using AS Disease Activity Score and C - reactive protein (ASDAS-CRP). Bath AS Functional Index (BASFI) and Bath AS Metrology Index (BASMI) were used to assess the functional impairment and the spinal mobility respectively. Radiological damage was scored according to modified Stoke AS Spine Score (mSASSS) and BMD was measured in the lumbar spine and femoral neck. Results: The mean serum 25(OH)D levels in AS patients were significantly lower compared to healthy controls (27.73 ± 14.27 vs. 38.46 ± 8.11ng/ml, P <0.001). Among the patients, 60% exhibited hypovitaminosis D. AS patients with hypovitaminosis D had significantly higher ASDAS-CRP (p<0.001), BASFAI (p=0.0003) and mSASSS (p=0.04) scores. Additionally, BMD and Z scores at lumbar and femoral sites were significantly reduced in the patients with hypovitaminosis D (P < 0.05). Serum 25(OH)D was positively correlated with BMD (lumbar and femoral; p=0.002 and p=0.01 respectively) and Z scores (lumbar and femoral; p<0.001and p=0.01 respectively), whereas, negatively correlated with ASDAS-CRP (p<0.001), BASFI (p<0.001), mSASSS (p=0.003). ASDAS -CRP was the only significant predictor of hypovitaminosis D in AS patients. Conclusions: hypovitaminosis D is prevalent among AS patients and is associated with increased risk of active disease, impaired function, radiographic severity and bone mineral loss. Future studies with larger sample size are recommended to assess the impact of vitamin D deficiency on radiological progression in AS and to address whether or not vitamin D supplementation will help control active disease.


Sign in / Sign up

Export Citation Format

Share Document