metabolic shift
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 91)

H-INDEX

33
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Sreelekshmi Sreeku ◽  
Vinu Vijayan ◽  
Fathe Singh ◽  
Manu Sudhakar ◽  
Kiran M S

Abstract The white adipose tissues are metabolically inert which results in deranged biological signalling disorders resulting in obesity. Lack of vascularisation in these tissues is mainly responsible to make them metabolically inert. Not much work has been done in this direction to understand the role of angiogenesis in white adipocytes metabolism. In the present study, we evaluated the effect of angiogenic modulator in modulating the metabolism in white adipocyte. Nutraceuticals apigenin (Apg) was employed as angiogenic modulator. The results indicated that promoting angiogenesis by Apg enhanced the de novo differentiation and trans-differentiation of white adipocyte into brown like phenotype by triggering vascular endothelial growth factor A. Cross talk between endothelial and adipocytes were observed in co-culture studies. The metabolic shift in white adipocytes was observed to be due to the upregulation of PRDM16 cascade. The study provides new insights for inducing metabolic shift in white adipocytes by modulation of angiogenesis in white adipocyte to trigger browning for the treatment of obesity. Further the study opens scopes for development of medical devices for obese subjects, an area that needs to be addressed specifically with reference to soft tissue engineering as commercial soft tissue engineering scaffolds does not suit the obese patients.


Author(s):  
Roland Berthomieu ◽  
María Fernanda Pérez-Bernal ◽  
Gaëlle Santa-Catalina ◽  
Elie Desmond-Le Quéméner ◽  
Nicolas Bernet ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Joshua Trivlidis ◽  
Noof Aloufi ◽  
Fatmah Al-Habeeb ◽  
Parameswaran Nair ◽  
Ilan Azuelos ◽  
...  

Abstract Background Pulmonary fibrosis is thought to be driven by recurrent alveolar epithelial injury which leads to the differentiation of fibroblasts into α-smooth muscle actin (α-SMA)-expressing myofibroblasts and subsequent deposition of extracellular matrix (ECM). Transforming growth factor beta-1 (TGF-β1) plays a key role in fibroblast differentiation, which we have recently shown involves human antigen R (HuR). HuR is an RNA binding protein that also increases the translation of hypoxia inducible factor (HIF-1α) mRNA, a transcription factor critical for inducing a metabolic shift from oxidative phosphorylation towards glycolysis. This metabolic shift may cause fibroblast differentiation. We hypothesized that under hypoxic conditions, HuR controls myofibroblast differentiation and glycolytic reprogramming in human lung fibroblasts (HLFs). Methods Primary HLFs were cultured in the presence (or absence) of TGF-β1 (5 ng/ml) under hypoxic (1% O2) or normoxic (21% O2) conditions. Evaluation included mRNA and protein expression of glycolytic and myofibroblast/ECM markers by qRT-PCR and western blot. Metabolic profiling was done by proton nuclear magnetic resonance (1H- NMR). Separate experiments were conducted to evaluate the effect of HuR on metabolic reprogramming using siRNA-mediated knock-down. Results Hypoxia alone had no significant effect on fibroblast differentiation or metabolic reprogramming. While hypoxia- together with TGFβ1- increased mRNA levels of differentiation and glycolysis genes, such as ACTA2, LDHA, and HK2, protein levels of α-SMA and collagen 1 were significantly reduced. Hypoxia induced cytoplasmic translocation of HuR. Knockdown of HuR reduced features of fibroblast differentiation in response to TGF-β1 with and without hypoxia, including α-SMA and the ECM marker collagen I, but had no effect on lactate secretion. Conclusions Hypoxia reduced myofibroblasts differentiation and lactate secretion in conjunction with TGF-β. HuR is an important protein in the regulation of myofibroblast differentiation but does not control glycolysis in HLFs in response to hypoxia. More research is needed to understand the functional implications of HuR in IPF pathogenesis.


PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001447
Author(s):  
Ayelén M. Santamans ◽  
Valle Montalvo-Romeral ◽  
Alfonso Mora ◽  
Juan Antonio Lopez ◽  
Francisco González-Romero ◽  
...  

During the first weeks of postnatal heart development, cardiomyocytes undergo a major adaptive metabolic shift from glycolytic energy production to fatty acid oxidation. This metabolic change is contemporaneous to the up-regulation and activation of the p38γ and p38δ stress-activated protein kinases in the heart. We demonstrate that p38γ/δ contribute to the early postnatal cardiac metabolic switch through inhibitory phosphorylation of glycogen synthase 1 (GYS1) and glycogen metabolism inactivation. Premature induction of p38γ/δ activation in cardiomyocytes of newborn mice results in an early GYS1 phosphorylation and inhibition of cardiac glycogen production, triggering an early metabolic shift that induces a deficit in cardiomyocyte fuel supply, leading to whole-body metabolic deregulation and maladaptive cardiac pathogenesis. Notably, the adverse effects of forced premature cardiac p38γ/δ activation in neonate mice are prevented by maternal diet supplementation of fatty acids during pregnancy and lactation. These results suggest that diet interventions have a potential for treating human cardiac genetic diseases that affect heart metabolism.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 298-298
Author(s):  
Yimeng Gao ◽  
Joshua T Zimmer ◽  
Radovan Vasic ◽  
Chengyang Liu ◽  
Rana Gbyli ◽  
...  

Abstract During hematopoietic differentiation from hematopoietic stem cells (HSCs) to mature blood cells, cells undergo a metabolic shift from glycolysis to mitochondrial respiration. The mechanisms by which hematopoietic cells adjust their energy metabolism are still under investigation. N6-mehyladenosine (m 6A) mRNA modification has been reported to regulate numerous fundamental cellular processes through control of RNA stability or translational efficiency. The fat mass and obesity-associated protein (FTO), an m 6A m and m 6A mRNA demethylase, has been reported to affect cellular metabolism in acute myeloid leukemia (AML). ALKBH5, the specific RNA m 6A demethylase, controls oncogene expression in AML. ALKBH5 becomes highly expressed in hematopoietic progenitors during hematopoietic development but the physiological role of RNA m 6A demethylase during hematopoiesis remains unknown. To investigate the function of the RNA m 6A demethylase ALKBH5 in hematopoiesis, we generated Vav-iCre +; Alkbh5fl/fl (vcAlkbh5-/-) mice, resulting in deletion of Alkbh5 specifically in the hematopoietic system. vcAlkbh5-/-mice showed no hematopoietic defects at steady states up to 12 months of age. We applied TimeLapse-seq on lineage-depleted bone marrow cells of WT and vcAlkbh5-/- mice to determine whether loss of ALKBH5 perturbed mRNA stability and/or RNA turnover. Ogdh mRNA was the most destabilized transcript resulting in significantly reduced OGDH protein levels. OGDH is the rate-limiting enzyme in the tricarboxylic acid (TCA) cycle. Inhibition of OGDH subsequently induces production of L-2-hydroxyglutarate (L-2-HG), whose metabolism is closely coupled to energy metabolism through inhibition of oxygen consumption. L-2-HG, the enantiomer of D-2-HG, inhibits the function of a-ketoglutarate (a-KG)-dependent enzymes, including TET and KDM enzymes. We measured L- and D-2-HG in the plasma of WT and vcAlkbh5-/- mice by chiral derivatization to distinguish the two enantiomers. Although D-2-HG levels were similar in the plasma of WT and vcAlkbh5-/- mice, L-2-HG levels were significantly increased in the plasma of vcAlkbh5-/- mice. We therefore determined the function of Jumonji C-domain lysine demethylases (JmjC-KDMs) by measuring histone methylation: H3K9me3, H3K27me3 and H3K36me3 modifications were all significantly increased in Alkbh5-deficient hematopoietic cells. We next sought to understand whether reduction of OGDH expression and resulting increased L-2-HG levels production could impair energy metabolism via perturbation of the TCA cycle and oxidative phosphorylation (OXPHOS) in the mitochondria. We isolated lineage negative hematopoietic stem and progenitor cells (HSPCs) from WT and vcAlkbh5-/- mice and subjected these to the Seahorse ATP Rate Assay. Comparing oxygen consumption rate (OCR) data and the kinetics of the Extracellular Acidification Rate (ECAR) of both groups, we found that less ATP was produced by mitochondria of the vcAlkbh5-/- cells, while ATP produced by glycolysis showed no difference between the two groups. In the meantime, the ultrastructure of mitochondria in the Alkbh5-deficient cells remains normal. We next determined whether the attenuated energy metabolism of Alkbh5-deficient HSPCs was functionally relevant by testing HSPC function in competitive transplantation assays. Interestingly, vcAlkbh5-/- cells showed a significant competitive defect at all differentiation stages except in phenotypic long-term HSCs (LT-HSCs). This suggests that LT-HSCs, thought to preferentially rely on glycolysis as opposed to OXPHOS for their energy source, are protected from loss of ALKBH5 and OGDH. In conclusion, our study demonstrates that ALKBH5 modulates energy metabolism by regulating mRNA stability of metabolic enzymes through its m 6A demethylation activity during hematopoiesis. This finding links Alkbh5 expression kinetics to the metabolic shift from glycolysis to mitochondrial OXPHOS during hematopoietic development. Disclosures No relevant conflicts of interest to declare.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6806
Author(s):  
Da Seul Kong ◽  
Eun Joo Park ◽  
Sakuntala Mutyala ◽  
Minsoo Kim ◽  
Yunchul Cho ◽  
...  

Crude glycerol is a major byproduct in the production of biodiesel and contains a large number of impurities. The transformation of crude glycerol into valuable compounds such as 1,3-propanediol (1,3-PDO) using clean and renewable processes, like bioconversion, is an important task for the future of the chemical industry. In this study, 1,3-PDO bioproductions from crude and pure glycerol were estimated as 15.4 ± 0.8 and 11.4 ± 0.1 mmol/L, respectively. Because 1,3-PDO is a reductive metabolite that requires additional reducing energy, external supplements of electron for further improvement of 1,3-PDO biosynthesis were attempted using a bioelectrochemical system (BES) or zero-valent iron (ZVI). The conversions of crude and pure glycerol under electrode and iron-based cultivation were investigated for 1,3-PDO production accompanied by metabolic shift and cell growth. The BES-based conversion produced 32.6 ± 0.6 mmol/L of 1,3-PDO with ZVI implementation.


2021 ◽  
Vol 22 (19) ◽  
pp. 10371
Author(s):  
Magdalena Wujak ◽  
Christine Veith ◽  
Cheng-Yu Wu ◽  
Tessa Wilke ◽  
Zeki Ilker Kanbagli ◽  
...  

Increased proliferation of pulmonary arterial smooth muscle cells (PASMCs) in response to chronic hypoxia contributes to pulmonary vascular remodeling in pulmonary hypertension (PH). PH shares numerous similarities with cancer, including a metabolic shift towards glycolysis. In lung cancer, adenylate kinase 4 (AK4) promotes metabolic reprogramming and metastasis. Against this background, we show that AK4 regulates cell proliferation and energy metabolism of primary human PASMCs. We demonstrate that chronic hypoxia upregulates AK4 in PASMCs in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. RNA interference of AK4 decreases the viability and proliferation of PASMCs under both normoxia and chronic hypoxia. AK4 silencing in PASMCs augments mitochondrial respiration and reduces glycolytic metabolism. The observed effects are associated with reduced levels of phosphorylated protein kinase B (Akt) as well as HIF-1α, indicating the existence of an AK4-HIF-1α feedforward loop in hypoxic PASMCs. Finally, we show that AK4 levels are elevated in pulmonary vessels from patients with idiopathic pulmonary arterial hypertension (IPAH), and AK4 silencing decreases glycolytic metabolism of IPAH-PASMCs. We conclude that AK4 is a new metabolic regulator in PASMCs interacting with HIF-1α and Akt signaling pathways to drive the pro-proliferative and glycolytic phenotype of PH.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1432
Author(s):  
Malena Rabenau ◽  
Benjamin Dillberger ◽  
Madeline Günther ◽  
Sylvia Krippner ◽  
Veronika Butterweck ◽  
...  

Recently, we reported that the Cimicifuga racemosa extract Ze 450 mediated protection from oxidative cell damage through a metabolic shift from oxidative phosphorylation to glycolysis. Here, we investigated the molecular mechanisms underlying the effects of Ze 450 against ferroptosis in neuronal cells, with a particular focus on mitochondria. The effects of Ze 450 on respiratory complex activity and hallmarks of ferroptosis were studied in isolated mitochondria and in cultured neuronal cells, respectively. In addition, Caenorhabditis elegans served as a model organism to study mitochondrial damage and longevity in vivo. We found that Ze 450 directly inhibited complex I activity in mitochondria and enhanced the metabolic shift towards glycolysis via cMyc and HIF1α regulation. The protective effects against ferroptosis were mediated independently of estrogen receptor activation and were distinct from effects exerted by metformin. In vivo, Ze 450 protected C. elegans from the mitochondrial toxin paraquat and promoted longevity in a dose-dependent manner. In conclusion, Ze 450 mediated a metabolic shift to glycolysis via direct effects on mitochondria and altered cell signaling, thereby promoting sustained cellular resilience to oxidative stress in vitro and in vivo.


2021 ◽  
Author(s):  
Rumi Itoyama ◽  
Noriko Yasuda-Yoshihara ◽  
Fumimasa Kitamura ◽  
Tadahito Yasuda ◽  
Luke Bu ◽  
...  

2021 ◽  
Author(s):  
Daniela Dias-Pedroso ◽  
José S. Ramalho ◽  
Vilma A. Sardão ◽  
John G. Jones ◽  
Carlos C. Romão ◽  
...  

Abstract Microglia are the immune competent cell of the central nervous system (CNS), promoting brain homeostasis and regulating inflammatory response against infection and injury. Chronic or exacerbated neuroinflammation is a cause of damage in several brain pathologies. Endogenous carbon monoxide (CO), produced from the degradation of heme, is described as anti-apoptotic and anti-inflammatory in several contexts, including in the CNS. Neuroglobin (Ngb) is a haemoglobin-homologous protein, which upregulation triggers antioxidant defence and prevents neuronal apoptosis. Thus, we hypothesized a crosstalk between CO and Ngb, in particular, that the anti-neuroinflammatory role of CO in microglia depends on Ngb. A novel CO-releasing molecule (ALF826) based on molybdenum was used for delivering CO in microglial culture.BV-2 mouse microglial cell line was challenged with lipopolysaccharide (LPS) for triggering inflammation, and after 6h ALF826 was added. CO exposure limited inflammation by decreasing inducible nitric oxide synthase (iNOS) expression and the production of nitric oxide (NO) and tumour necrosis factor-a (TNF-a), and by increasing interleukine-10 (IL-10) release. CO-induced Ngb upregulation correlated in time with CO’s anti-inflammatory effect. Moreover, knocking down Ngb reversed the anti-inflammatory effect of CO, suggesting that dependents on Ngb expression. CO-induced Ngb upregulation was independent on ROS signalling, but partially dependent on the transcriptional factor SP1. Finally, microglial cell metabolism is also involved in the inflammatory response. In fact, LPS treatment decreased oxygen consumption in microglia, indicating a switch to glycolysis, which is associated with a proinflammatory. While CO treatment increased oxygen consumption, reverting LPS effect and indicating a metabolic shift into a more oxidative metabolism. Moreover, in the absence of Ngb this phenotype was no longer observed, indicating Ngb is needed for CO’s modulation of microglial metabolism. Finally, the metabolic shift induced by CO did not depend on alteration of mitochondrial population. In conclusion, neuroglobin emerges for the first time as a key player for CO signalling against exacerbated neuroinflammation in microglia.


Sign in / Sign up

Export Citation Format

Share Document