microarray immunoassay
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
pp. 104063872110578
Author(s):  
Jorge Pulido ◽  
Marga García-Durán ◽  
Ricardo Fernández-Antonio ◽  
Carmen Galán ◽  
Lissette López ◽  
...  

During the COVID-19 pandemic, infection of farmed mink has become not only an economic issue but also a widespread public health concern. International agencies have advised the use of strict molecular and serosurveillance methods for monitoring the SARS-CoV2 status on mink farms. We developed 2 ELISAs and a duplex protein microarray immunoassay (MI), all in a double-recognition format (DR), to detect SARS-CoV2 antibodies specific to the receptor-binding domain (RBD) of the spike protein and to the full-length nucleoprotein (N) in mink sera. We collected 264 mink serum samples and 126 oropharyngeal samples from 5 Spanish mink farms. In both of the ELISAs and the MI, RBD performed better than N protein for serologic differentiation of mink from SARS-CoV2–positive and –negative farms. Therefore, RBD was the optimal antigenic target for serosurveillance of mink farms.


Author(s):  
Julia Klüpfel ◽  
Rosa Carolina Koros ◽  
Kerstin Dehne ◽  
Martin Ungerer ◽  
Silvia Würstle ◽  
...  

AbstractIn the face of the COVID-19 pandemic, the need for rapid serological tests that allow multiplexing emerged, as antibody seropositivity can instruct about individual immunity after an infection with SARS-CoV-2 or after vaccination. As many commercial antibody tests are either time-consuming or tend to produce false negative or false positive results when only one antigen is considered, we developed an automated, flow-based chemiluminescence microarray immunoassay (CL-MIA) that allows for the detection of IgG antibodies to SARS-CoV-2 receptor-binding domain (RBD), spike protein (S1 fragment), and nucleocapsid protein (N) in human serum and plasma in less than 8 min. The CoVRapid CL-MIA was tested with a set of 65 SARS-CoV-2 serology positive or negative samples, resulting in 100% diagnostic specificity and 100% diagnostic sensitivity, thus even outcompeting commercial tests run on the same sample set. Additionally, the prospect of future quantitative assessments (i.e., quantifying the level of antibodies) was demonstrated. Due to the fully automated process, the test can easily be operated in hospitals, medical practices, or vaccination centers, offering a valuable tool for COVID-19 serosurveillance.


2021 ◽  
Author(s):  
Jacob H. Gillis ◽  
Keely N. Thomas ◽  
Senthilkumar Manoharan ◽  
Mallikarjuna Panchakshari ◽  
Amber W. Taylor ◽  
...  

ABSTRACTMeasles-containing vaccines (MCV), specifically vaccines against measles and rubella (MR), are extremely effective and critical for the eradication of measles and rubella diseases. In developed countries, vaccination rates are high and vaccines are readily available, but continued high prevalence of both diseases in developing countries and surges in measles deaths in recent years have highlighted the need to expand vaccination efforts. To meet demand for additional vaccines at a globally affordable price, it is highly desirable to streamline vaccine production thereby reducing cost and speeding up time to delivery. MR vaccine characterization currently relies on the 50% cell culture infectious dose (CCID50) assay, an endpoint assay with low reproducibility that requires 10-14 days to complete. For streamlining bioprocess analysis and improving measurement precision relative to CCID50, we developed the VaxArray Measles and Rubella assay kit, which is based on a multiplexed microarray immunoassay with a 5-hour time to result. Here we demonstrate vaccine-relevant sensitivity ranging from 345 – 800 IFU/mL up to 100,000 IFU/mL and specificity that allows simultaneous analysis in bivalent vaccine samples. The assay is sensitive to antigen stability and has minimal interference from common vaccine additives. The assay exhibits high reproducibility and repeatability, with 15% CV, much lower than the typical 0.3 log10 error (~65%) observed for the CCID50 assay. The intact protein concentration measured by VaxArray is reasonably correlated to, but not equivalent to, CCID50 infectivity measurements for harvest samples. However, the measured protein concentration exhibits equivalency to CCID50 for more purified samples, including concentrated virus pools and monovalent bulks, making the assay a useful new tool for same-day analysis of vaccine samples for bioprocess development, optimization, and monitoring.


IUBMB Life ◽  
2020 ◽  
Vol 72 (9) ◽  
pp. 1976-1985
Author(s):  
Feixiang Teng ◽  
Feifei Han ◽  
Xuming Zhu ◽  
Lili Yu ◽  
Dongzheng Gai ◽  
...  

2020 ◽  
Vol 478 ◽  
pp. 112712 ◽  
Author(s):  
Marina A. Plotnikova ◽  
Sergey A. Klotchenko ◽  
Kirill I. Lebedev ◽  
Alexey A. Lozhkov ◽  
Aleksandr S. Taraskin ◽  
...  

2019 ◽  
Vol 322 (1) ◽  
pp. 99-104
Author(s):  
Bharti Jain ◽  
Savita Kulkarni ◽  
Sharmila Banerjee ◽  
M. G. Ramakrishna Rajan

Toxins ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 415 ◽  
Author(s):  
Xian Zhang ◽  
Zuohuan Wang ◽  
Yun Fang ◽  
Renjie Sun ◽  
Tong Cao ◽  
...  

We developed and tested a prototype of an antibody microarray immunoassay for simultaneous quantitative detection of four typical mycotoxins (aflatoxin B1, ochratoxin A, zearalenone, and fumonisin B1) in corn samples. The test kit consisted of a nitrocellulose membrane layered with immobilized monoclonal antibodies against mycotoxins. During the assay, the mycotoxin-protein conjugates were biotinylated. The signal detection was enhanced by a combination of the biotin-streptavidin system and enhanced chemiluminescence (ECL). This improved the sensitivity of the assay. Under the optimized conditions, four calibration curves with goodness of fit (R2 > 0.98) were plotted. The results showed that the detection limits for aflatoxin B1, ochratoxin A, zearalenone, and fumonisin B1 were 0.21, 0.19, 0.09, and 0.24 ng/mL, with detection ranges of 0.47–55.69, 0.48–127.11, 0.22–31.36, and 0.56–92.57 ng/mL, respectively. The limit of detection (LOD) of this antibody microarray for aflatoxin B1, ochratoxin A, zearalenone, and fumonisin B1 in corn was 5.25, 4.75, 2.25, and 6 μg/kg, respectively. The recovery rates from the spiked samples were between 79.2% and 113.4%, with coefficient of variation <10%. The results of the analysis of commercial samples for mycotoxins using this new assay and the liquid chromatography-tandem mass spectrometry (LC-MS/MS) were comparable and in good agreement. This assay could also be modified for the simultaneous detection of other multiple mycotoxins, as well as low-weight analytes, hazardous to human health.


Sign in / Sign up

Export Citation Format

Share Document