Fluid Dynamics of a Bistable Diverter Under Ultrasonic Excitation—Part I: Performance Characteristic

2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Michael Mair ◽  
Marko Bacic

Abstract This paper investigates an ultrasonically driven bistable fluidic diverter at inlet nozzle Mach numbers of up to Mn = 0.3 and operating pressure ratios of up to Pr = 1.1. Part I examines the switching characteristics with respect to nondimensional parameters of excitation amplitude, frequency, required energy, switching time and inlet total pressure. It is shown that to promote switching at turbulent jet Mach numbers of up to Mn = 0.3 it is necessary to excite a jet preferred mode of St = 0.45 which differs from previously reported laminar jet operation of the similar device. For the reference case the switching time amounts to 1.2 ms suggesting oscillation frequencies of up to 500 Hz. Part II is a combined experimental and numerical study that examines the triggered instability modes in the free shear layer using large eddy simulations (LES) and visualizes the flow field using Particle Image Velocimetry (PIV).

2021 ◽  
Author(s):  
Medha Shruti ◽  
A. Vamsikrishna ◽  
B. M. Prabhudev
Keyword(s):  

2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Halina Pawlak-Kruczek ◽  
Robert Lewtak ◽  
Zbigniew Plutecki ◽  
Marcin Baranowski ◽  
Michal Ostrycharczyk ◽  
...  

The paper presents the experimental and numerical study on the behavior and performance of an industrial scale boiler during combustion of pulverized bituminous coal with various shares of predried lignite. The experimental measurements were carried out on a boiler WP120 located in CHP, Opole, Poland. Tests on the boiler were performed during low load operation and the lignite share reached over to 36% by mass. The predried lignite, kept in dedicated separate bunkers, was mixed with bituminous coal just before the coal mills. Computational fluid dynamic (CFD) simulation of a cofiring scenario of lignite with hard coal was also performed. Site measurements have proven that cofiring of a predried lignite is not detrimental to the boiler in terms of its overall efficiency, when compared with a corresponding reference case, with 100% of hard coal. Experiments demonstrated an improvement in the grindability that can be achieved during co-milling of lignite and hard coal in the same mill, for both wet and dry lignite. Moreover, performed tests delivered empirical evidence of the potential of lignite to decrease NOx emissions during cofiring, for both wet and dry lignite. Results of efficiency calculations and temperature measurements in the combustion chamber confirmed the need to predry lignite before cofiring. Performed measurements of temperature distribution in the combustion chamber confirmed trend that could be seen in the results of CFD. CFD simulations were performed for predried lignite and demonstrated flow patterns in the combustion chamber of the boiler, which could prove useful in case of any further improvements in the firing system. CFD simulations reached satisfactory agreement with the site measurements in terms of the prediction of emissions.


Author(s):  
HUA-GUANG LI ◽  
XI-YUN LU ◽  
VIGOR YANG

Nitrogen injection under conditions in close vicinity of liquid-gas critical point is studied through numerical simulation. The thermodynamic and transport properties of fluid exhibit anomalies in the near-critical fluid regime. These anomalies can cause distinctive effects on heat transfer and hydrodynamics. To focus on the influence of the highly variable properties and avoid the difficulties encountered in modeling high Reynolds number flows, a relatively low injection Reynolds number is adopted. A reference case with the same configuration and Reynolds number is also simulated in the ideal gas regime. Full conservation laws, real-fluid thermodynamic and transport phenomena are accommodated in the model. The obtained results reveal that the flow features of the near-critical fluid jet are significantly different from the ideal gas case. The near-critical fluid jet spreads faster and mixes better with the ambient fluid compared to the ideal gas jet. It is also identified that vortex pairing process develops faster in the near-critical case than in the ideal gas case. Detailed analysis of data at different streamwise positions including both flat shear layer region and fully developed vortex region reveals the effect of volume dilatation and baroclinic torque plays an important role in the near-critical fluid case. The volume dilatation effect disturbs the shear layer and makes it more unstable. The volume dilatation and baroclinic effects strengthen the vorticity and stimulate the vortex rolling up and pairing process.


Author(s):  
Stefano Lenci ◽  
Giuseppe Rega

Abstract The problem of avoiding the homoclinic bifurcation of the hilltop saddle of the Helmholtz equation by a shrewd choice of the shape of the external excitation is considered. The distance between the perturbed manifolds is computed by means of the Melnikov’s method, and its dependence on the shape of the excitation is emphasized. Successively, it is shown how it is possible to determine a theoretical optimal excitation which maximizes the distance between stable and unstable manifolds for a fixed excitation amplitude or, equivalently, which maximizes the critical amplitude for homoclinic bifurcation. The practical case of a finite number of subharmonics is considered in detail. The corresponding optimal problems are solved numerically and the related optimal excitations are given. It is shown that when the number of subharmonics increases, the critical threshold for homoclinic bifurcation tends to double with respect to the reference case of harmonic excitation. Some numerical simulations are finally performed to verify the theoretical predictions and the effectiveness of the control procedure.


Author(s):  
Jingjun Lou ◽  
Shijian Zhu

The application of chaos method in line spectrum reduction is numerically studied. The nonlinear dynamics and the power flow transmissibility of a two-degree-of-freedom vibration isolation system with nonlinear spring are analyzed. The dynamic behavior distribution chart of the system is obtained. Cascades of bifurcation of the system with different excitation amplitude are also gained. The isolation effectiveness is analyzed from the point of view of energy. The numerical results show that the reduction of the line spectrum in chaotic state is much greater than that in non-chaotic state.


2005 ◽  
Vol 128 (3) ◽  
pp. 435-443 ◽  
Author(s):  
Bo Song ◽  
Wing F. Ng

An experimental and numerical study was performed on an optimized compressor stator cascade designed to operate efficiently at high inlet Mach numbers (M1) ranging from 0.83 to 0.93 (higher supercritical flow conditions). Linear cascade tests confirmed that low losses and high turning were achieved at normal supercritical flow conditions (0.7<M1<0.8), as well as higher supercritical flow conditions (0.83<M1<0.93), both at design and off-design incidences. The performance of this optimized stator cascade is better than those reported in the literature based on Double Circular Arc (DCA) and Controlled Diffusion Airfoil (CDA) blades, where losses increase rapidly for M1>0.83. A two-dimensional (2D) Navier-Stokes solver was applied to the cascade to characterize the performance and flow behavior. Good agreement was obtained between the CFD and the experiment. Experimental loss characteristics, blade surface Mach numbers, shadowgraphs, along with CFD flowfield simulations, were presented to elucidate the flow physics. It is found that low losses are due to the well-controlled boundary layer, which is attributed to an optimum flow structure associated with the blade profile. The multishock pattern and the advantageous pressure gradient distribution on the blade are the key reasons of keeping the boundary layer from separating, which in turn accounts for the low losses at the higher supercritical flow conditions.


2012 ◽  
Vol 19 ◽  
pp. 374-380
Author(s):  
SUN SEOK BYEON ◽  
SANG JUN LEE ◽  
YOUN-JEA KIM

Abrupt closing valve in piping systems is sometimes resulted in cavitation due to the occurrence of high pressure difference. The bubbles generating by cavitation influence operating pressure and then those generate shock wave and vibration. These phenomena can consequentially cause to corrosion and erosion. So, the cavitation is the important factor to consider reliability of piping systems and mechanical lifetime. This paper investigated the various inhibition methods of cavitation in piping systems in which butterfly valves are installed. To prevent cavitation occurrence, it is desirable to analyze its characteristics between the upstream and downstream of process valve. Results show that the fluid velocity is fast when a working fluid passed through butterfly valve. The pressure of these areas was not only under saturation vapor pressure of water, but also cavitation was continuously occurred. We confirmed that the effect of existence of inserted orifice and influence to break condition under saturation vapor pressure of water. Results were graphically depicted by pressure distribution, velocity distribution, and vapor volume fraction.


1978 ◽  
Vol 87 (2) ◽  
pp. 349-383 ◽  
Author(s):  
A. K. M. F. Hussain ◽  
K. B. M. Q. Zaman

Free shear layer stability measurements with a hot wire revealed that the probe itself can trigger and sustain upstream instability modes like the slit jet-wedge edge tones. The flow fields associated with the free shear layer tones induced in axisym-metric and plane air shear layers by a hot-wire probe and by a plane wedge were then explored experimentally, and found to be different in many ways from the widely investigated jet edge tone phenomenon.As many as four frequency stages have been identified, there being a fifth stage associated with the subharmonic attributed to vortex pairing in the free shear layer. No evidence of hysteresis could be found in the shear layer tone. In the interstage jump (i.e. bimodal) regions, the tone occurred in only one mode at a time while intermittently switching from one to the other. Frequency variations in each stage are shown to collapse on a single curve when non-dimensionalized with the initial momentum thickness θeor with the lip-wedge distanceh, and plotted as a function ofh/θe.Phase average measurements locked onto the tone fundamental show that the phase velocity and wavelength of the tone-induced velocity fluctuation are essentially independent of the stage of tone generation; in each stage, both phase velocity and wavelength decrease with increasing frequency but undergo jumps at starts of new stages. The measured amplitude and phase profiles, as well as the variations of the shear tone wavenumber and phase velocity with the Strouhal number, show reasonable agreement with the predictions of the spatial stability theory. The wavelength λ bears a unique relation toh, thish, δ relation being different from the Brown-Curle equation for the jet edge tone.Shear layer tones would be typically induced in near-field shear layer measurements involving invasive probes, and can produce misleading results. A method for determining the true free shear layer natural instability frequency is recommended.


Sign in / Sign up

Export Citation Format

Share Document