scholarly journals Suggested Research Trends in the Area of Micro-EDM—Study of Some Parameters Affecting Micro-EDM

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1184
Author(s):  
Atanas Ivanov ◽  
Abhishek Lahiri ◽  
Venelin Baldzhiev ◽  
Anna Trych-Wildner

This paper provides an overall view of the current research in micro-electrical discharge machining (micro-EDM or µEDM) and looks into the present understanding of the material removing mechanism and the common approach for electrode material selection and its limitations. Based on experimental data, the authors present an analysis of different materials’ properties which have an influence on the electrodes' wear ratio and energy distribution during the spark. The experiments performed in micro-EDM conditions reveal that properties such as electron work function and electrical resistivity strongly correlate with the discharge energy ratio. The electrode wear ratio, on the other hand, is strongly influenced by the atomic bonding energy and was found to be related to the tensile modulus. The proposed correlation functions characterized the data with a high determination coefficient exceeding 99%.

2020 ◽  
Vol 13 (3) ◽  
pp. 219-229
Author(s):  
Baocheng Xie ◽  
Jianguo Liu ◽  
Yongqiu Chen

Background: Micro-Electrical Discharge Machining (EDM) milling is widely used in the processing of complex cavities and micro-three-dimensional structures, which is a more effective processing method for micro-precision parts. Thus, more attention has been paid on the micro-EDM milling. Objective : To meet the increasing requirement of machining quality and machining efficiency of micro- EDM milling, the processing devices and processing methods of micro-EDM milling are being improved continuously. Methods: This paper reviews various current representative patents related to the processing devices and processing methods of micro-EDM milling. Results: Through summarizing a large number of patents about processing devices and processing methods of micro-EDM milling, the main problems of current development, such as the strategy of electrode wear compensation and the development trends of processing devices and processing methods of micro-EDM milling are discussed. Conclusion: The optimization of processing devices and processing methods of micro-EDM milling are conducive to solving the problems of processing efficiency and quality. More relevant patents will be invented in the future.


2017 ◽  
Vol 64 (2) ◽  
pp. 149-163 ◽  
Author(s):  
Govindan Puthumana

AbstractTo achieve better precision of features generated using the micro-electrical discharge machining (micro-EDM), there is a necessity to minimize the wear of the tool electrode, because a change in the dimensions of the electrode is reflected directly or indirectly on the feature. This paper presents a novel modeling and analysis approach of the tool wear in micro-EDM using a systematic statistical method exemplifying the influences of capacitance, feed rate and voltage on the tool wear ratio. The association between tool wear ratio and the input factors is comprehended by using main effect plots, interaction effects and regression analysis. A maximum variation of four-fold in the tool wear ratio have been observed which indicated that the tool wear ratio varies significantly over the trials. As the capacitance increases from 1 to 10 nF, the increase in tool wear ratio is by 33%. An increase in voltage as well as capacitance would lead to an increase in the number of charged particles, the number of collisions among them, which further enhances the transfer of the proportion of heat energy to the tool surface. Furthermore, to model the tool wear phenomenon, a regression relationship between tool wear ratio and the process inputs has been developed.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 594 ◽  
Author(s):  
Izidor Sabotin ◽  
Gianluca Tristo ◽  
Joško Valentinčič

In this paper, development of a technical model of micro Electrical Discharge Machining in milling configuration (EDM milling) is presented. The input to the model is a parametrically presented feature geometry and the output is a feature machining time. To model key factors influencing feature machining time, an experimental campaign by machining various microgrooves into corrosive resistant steel was executed. The following parameters were investigated: electrode dressing time, material removal rate, electrode wear, electrode wear control time and machining strategy. The technology data and knowledge base were constructed using data obtained experimentally. The model is applicable for groove-like features, commonly applied in bottom grooved micromixers (BGMs), with widths from 40 to 120 µm and depths up to 100 µm. The optimization of a BGM geometry is presented as a case study of the model usage. The mixing performances of various micromixer designs, compliant with micro EDM milling technology, were evaluated using computational fluid dynamics modelling. The results show that slanted groove micromixer is a favourable design to be implemented when micro EDM milling technology is applied. The presented technical model provides an efficient design optimization tool and, thus, aims to be used by a microfluidic design engineer.


2012 ◽  
Vol 472-475 ◽  
pp. 2426-2429 ◽  
Author(s):  
Hu Wang ◽  
Yuan Gang Wang ◽  
Meng Hua Wu ◽  
Xiao Peng Li ◽  
Yu Liu

Electrode wear has a great adverse effect on the accuracy of Micro Electrical Discharge Machining (Micro-EDM) and impedes the improvement of Micro-EDM. In this study the distribution of electric field and current density was analyzed exhaustively in order to explore the generating mechanisms of rod electrode wear by finite element analysis and experiment. Experimental results indicated that corner wear occurred first, followed by side wear resulted from skin effect and debris in Micro-EDM, which was significant in enhancing the accuracy of machining.


2010 ◽  
Vol 143-144 ◽  
pp. 1434-1438
Author(s):  
Xiu Zhuo Fu ◽  
Qin He Zhang ◽  
Guang Hua Bao ◽  
Yu Jie Zhu

Micro electrical discharge machining (micro-EDM) has some shortcomings such as poor material removal rate (MRR) and high electrode wear ratio (EWR) etc, in order to overcome these demerits, a new piezoelectric self-adaptive micro-EDM, based on inverse piezoelectric effect, was developed in this paper. The structure and working principle of this new technology are different from traditional micro-EDM. Piezoelectric actuator used as the micro driven mechanism and it is simple. This new technology can realize self-elimination in the working process because of its special structure. Working principles and process of the new system were analyzed in this paper. The effect of parameters such as voltage, capacitance, and resistance on MRR, EWR and surface roughness was analyzed. Statistical analyses of the results show that voltage, capacitance significantly influence MRR, EWR and surface roughness. Resistance R1 and R2 has much influence on MRR and relative small effect on EWR and surface roughness.


2011 ◽  
Vol 462-463 ◽  
pp. 1092-1096 ◽  
Author(s):  
Muslim Mahardika ◽  
Gunawan Setia Prihandana ◽  
Takashi Endo ◽  
Suyitno ◽  
B. Arifvianto ◽  
...  

The important thing in micro-machining is its accuracy. The Micro-Electrical Discharge Machining (micro-EDM) is a promising method in micro-machining, because (1) the process is independent on the hardness of the workpiece but only depends on its thermal conductivity and melting point and (2) it can be used to machine materials with highly complex geometrical shapes using a simple-shaped tool electrode. However, the process in micro-EDM is not totally well-known, especially related to the formation of discharge pulse energy and the fracture phenomena. In the micro-EDM processes, the formation of discharge pulse energy is a complex phenomenon, since it is related to many parameters such as discharge gap, charge voltage, capacitance, and tool electrode wear. In this paper, the Acoustic Emission (AE) sensor is used to detect the changes of discharge pulse energy during machining of brass using micro-EDM. The results shows that the AE signals can detect and explain the fracture phenomena during the micro-EDM processes.


2013 ◽  
Vol 652-654 ◽  
pp. 1157-1162
Author(s):  
Fu Qiang Hu ◽  
Jian Fei Sun ◽  
Jun Qi Wei ◽  
Yong Zhang ◽  
Yan Dong Jia ◽  
...  

This paper researches the material erosion mechanisms of high silicon- aluminum (Si-Al) alloy in micro electrical discharge machining (Micro-EDM). By using Quanta 200F environment scanning electron microscope, the microstructure of Al-50wt%Si alloy by spray forming was observed. And a simplified model of high Si-Al alloy was set up. The Al-50wt%Si alloy was machined by using copper electrode and tungsten electrode respectively. And the differences of surface morphologies and element energy spectrum were compared. The process and the material erosion mechanisms of high Si-Al alloy in Micro-EDM were analyzed in detail. The results may provide theoretical basis for Micro-EDM of high Si-Al alloy.


2013 ◽  
Vol 549 ◽  
pp. 503-510 ◽  
Author(s):  
Gianluca D'Urso ◽  
Giancarlo Maccarini ◽  
C. Merla

The recent miniaturization trend in manufacturing, has enhanced the production of new and highly sophisticated systems in various industrial fields. In recent years, machining of the so called difficult to cut materials has become an important issue in several sectors. Micro Electrical Discharge Machining (micro-EDM) thanks to its contactless nature, is one of the most important technologies for the machining of this type of materials and it can be considered as one of the most promising manufacturing technologies for the fabrication of micro components. One of the most relevant applications of micro-EDM is micro-drilling. Micro holes in fact, are widely used for example in micro-electromechanical systems (MEMS), serving as channels or nozzles to connect two micro-features, and in micro-mechanical components. The present study is about micro drilling of metal plates by means of micro-EDM technology. In particular, the aim of this work is to investigate the effects of the downsizing of the micro holes diameter on the drilling performances. The influence of the reduction of the diameters in terms of both process performances (e.g., tool wear, taper rate, diametrical overcut) and general quality of the holes was investigated. Steel plates having thickness equal to 0.8 mm were taken into account. The drilling process was carried out using a micro-EDM machine Sarix SX 200 with carbide electrodes having diameter equal to 300, 200, 100 and 50 μm. Since the standard electrodes adopted in this study had a diameter equal to 300 μm, a wire EDM unit was used to obtain the other electrodes. The relationship between the process parameters considered the most significant and the final output, was studied. Furthermore, the geometrical and dimensional properties of the micro-holes were analyzed using both optical and scanning electron microscopes. In particular, it is demonstrated that the diameter size has a significant influence on the final value of the diametrical overcut while peak current and frequency parameters have a negligible effect.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6074
Author(s):  
Tingting Ni ◽  
Qingyu Liu ◽  
Zhiheng Chen ◽  
Dongsheng Jiang ◽  
Shufeng Sun

Micro electrical discharge machining (micro EDM) is able to remove conductive material by non-contact instantaneous high temperature, which is more suitable for machining titanium and its alloys compared with traditional machining methods. To further improve the machining efficiency and machined surface quality of micro EDM, the nano particle surfactant mixed micro EDM method is put forward in this paper. Experiments were conducted to explore the effect of nano particle surfactant on the micro EDM performance of titanium alloy. The results show that the material removal rate of micro EDM in dielectric mixed with TiO2 is the highest when open-circuit voltage is 100 V, followed by Al2O3 and ZrO2. Lower tool wear rate can be produced by using dielectric mixed with nano particle surfactant. The taper ratio of micro EDM in dielectric mixed with nano particle surfactant is higher than that in deionized water. The surface roughness Ra of micro EDM in dielectric mixed with TiO2 can be 50% lower than that in deionized water. It is helpful to improve the machining performance by adding surface surfactant in the dielectric of micro EDM.


Sign in / Sign up

Export Citation Format

Share Document