natural microbial community
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Shira Houwenhuyse ◽  
Lore Bulteel ◽  
Naina Goel ◽  
Isabel Vanoverberghe ◽  
Ellen Decaestecker

Studies on stressor responses are often performed in controlled laboratory settings. The microbial communities in laboratory settings often differ from the natural environment, which could ultimately be reflected in different stress responses. In this study, we investigated the impact of single versus simultaneous multiple stressor exposure on Daphnia magna life history traits and whether this tolerance was microbiome-mediated. Daphnia individuals were exposed to the toxic cyanobacterium Microcystis aeruginosa and a fungal infection, Aspergillus aculeatus like type. Three genotypes were included to investigate genotype-specific responses. Survival, reproduction and body size were monitored for three weeks and gut microbial communities were sampled and characterized at the end of the experiment. Our study shows survival in Daphnia was microbiome-mediated as survival was only negatively impacted when Daphnia received a lab microbial community. Daphnia which received a natural microbial community have a broader environmental pool of microbiota to randomnly and selectively take up and showed no negative impact on survival. Simultaneous exposure to both stressors also revealed an antagonistic interaction for survival. Fecundity and body size were negatively impacted by exposure to stress, however, responses were here not microbiome-mediated. In addition, genotype specific responses were detected for survival and fecundity, which could be linked with the selective capabilities of the Daphnia genotypes to select beneficial or neutral microbial stains from the environment.


2021 ◽  
Vol 118 (41) ◽  
pp. e2101178118
Author(s):  
Brandon Kieft ◽  
Zhou Li ◽  
Samuel Bryson ◽  
Robert L. Hettich ◽  
Chongle Pan ◽  
...  

Blooms of marine phytoplankton fix complex pools of dissolved organic matter (DOM) that are thought to be partitioned among hundreds of heterotrophic microbes at the base of the food web. While the relationship between microbial consumers and phytoplankton DOM is a key component of marine carbon cycling, microbial loop metabolism is largely understood from model organisms and substrates. Here, we took an untargeted approach to measure and analyze partitioning of four distinct phytoplankton-derived DOM pools among heterotrophic populations in a natural microbial community using a combination of ecogenomics, stable isotope probing (SIP), and proteomics. Each 13C-labeled exudate or lysate from a diatom or a picocyanobacterium was preferentially assimilated by different heterotrophic taxa with specialized metabolic and physiological adaptations. Bacteroidetes populations, with their unique high-molecular-weight transporters, were superior competitors for DOM derived from diatom cell lysis, rapidly increasing growth rates and ribosomal protein expression to produce new relatively high C:N biomass. Proteobacteria responses varied, with relatively low levels of assimilation by Gammaproteobacteria populations, while copiotrophic Alphaproteobacteria such as the Roseobacter clade, with their diverse array of ABC- and TRAP-type transporters to scavenge monomers and nitrogen-rich metabolites, accounted for nearly all cyanobacteria exudate assimilation and produced new relatively low C:N biomass. Carbon assimilation rates calculated from SIP data show that exudate and lysate from two common marine phytoplankton are being used by taxonomically distinct sets of heterotrophic populations with unique metabolic adaptations, providing a deeper mechanistic understanding of consumer succession and carbon use during marine bloom events.*


Ground Water ◽  
2021 ◽  
Author(s):  
Charles J. Paradis ◽  
John I. Miller ◽  
Ji‐Won Moon ◽  
Sarah J. Spencer ◽  
Lauren M. Lui ◽  
...  

2021 ◽  
Author(s):  
Charles J. Paradis ◽  
John I. Miller ◽  
Ji-Won Moon ◽  
Sarah J Spencer ◽  
Lauren Michelle Lui ◽  
...  

Microbial-mediated nitrate removal from groundwater is widely recognized as the predominant mechanism for nitrate attenuation in contaminated aquifers and is largely dependent on the presence of a carbon-bearing electron donor. The repeated exposure of a natural microbial community to an electron donor can result in the sustained ability of the community to remove nitrate; this phenomenon has been clearly demonstrated at the laboratory scale. However, in situ demonstrations of this ability are lacking. For this study, ethanol (electron donor) was repeatedly injected into a groundwater well (treatment) for six consecutive weeks to establish the sustained ability of a microbial community to remove nitrate. A second well (control) located up-gradient was not injected with ethanol during this time. The treatment well demonstrated strong evidence of sustained ability as evident by concomitant ethanol and nitrate removal and subsequent sulfate removal upon consecutive exposures. Both wells were then monitored for six additional weeks under natural (no injection) conditions. During the final week, ethanol was injected into both treatment and control wells. The treatment well demonstrated sustained ability as evident by concomitant ethanol and nitrate removal whereas the control did not. Surprisingly, the treatment well did not indicate a sustained and selective enrichment of a microbial community. These results suggested that the predominant mechanism(s) of sustained ability likely exist at the enzymatic- and/or genetic-levels. The results of this study demonstrated that the in situ ability of a microbial community to remove nitrate can be sustained in the prolonged absence of an electron donor. Moreover, these results implied that the electron-donor exposure history of nitrate-contaminated groundwater can play an important role nitrate attenuation.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1262
Author(s):  
Jasmin Rauseo ◽  
Anna Barra Caracciolo ◽  
Francesca Spataro ◽  
Andrea Visca ◽  
Nicoletta Ademollo ◽  
...  

Diffuse environmental antibiotic and antibiotic resistance gene contamination is increasing human and animal exposure to these emerging compounds with a consequent risk of reduction in antibiotic effectiveness. The present work investigated the effect of the antibiotic sulfamethoxazole (SMX) on growth and antibiotic resistance genes of a microbial community collected from an anaerobic digestion plant fed with cattle manure. Digestate samples were used as inoculum for concentration-dependent experiments using SMX at various concentrations. The antibiotic concentrations affecting the mixed microbial community in terms of growth and spread of resistant genes (sul1, sul2) were investigated through OD (Optical Density) measures and qPCR assays. Moreover, SMX biodegradation was assessed by LC-MS/MS analysis. The overall results showed that SMX concentrations in the range of those found in the environment did not affect the microbial community growth and did not select for antibiotic-resistant gene (ARG) maintenance or spread. Furthermore, the microorganisms tested were able to degrade SMX in only 24 h. This study confirms the complexity of antibiotic resistance spread in real matrices where different microorganisms coexist and suggests that antibiotic biodegradation needs to be included for fully understanding the resistance phenomena among bacteria.


2021 ◽  
pp. 113-113
Author(s):  
Aleksandra Zeradjanin ◽  
Kristina Joksimovic ◽  
Jelena Avdalovic ◽  
Gordana Gojgic-Cvijovic ◽  
Takeshi Nakano ◽  
...  

Persistent organic pollutants (POPs) are lipophilic, persistent and bioaccumulative toxic compounds. In general, they are considered resistant to biological, photolytic, and chemical degradation and polychlorinated biphenyls (PCBs) belong to these chemicals. PCBs were never produced in Serbia, but they were imported and mainly used in electrical equipment, transformers, and capacitors. Our study aimed to analyse sequential multi-stage aerobic/anaerobic microbial biodegradation of PCBs present in the river sediment from an area known for long-term pollution with these chemicals. A study with an autochthonous natural microbial community (NMC model system) and NMC augmented with allochthonous hydrocarbon-degrading (AHD) microorganisms (isolated from location contaminated with petroleum products) (NMC-AHD model system) was performed in order to estimate the potential of these microorganisms for possible use in future bioremediation treatment of these sites. The laboratory biodegradation study lasted 70 days, after which an overall >33 % reduction in the concentration of total PCBs was observed. This study confirmed the strong potential of the NMC for the reduction of the level of PCBs in the river sediment under alternating multi-stage aerobic/anaerobic conditions.


2020 ◽  
Vol 14 (11) ◽  
pp. 2877-2889 ◽  
Author(s):  
Daniel Padfield ◽  
Alex Vujakovic ◽  
Steve Paterson ◽  
Rob Griffiths ◽  
Angus Buckling ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 860 ◽  
Author(s):  
Martina Di Lenola ◽  
Anna Barra Caracciolo ◽  
Valeria Ancona ◽  
Vito Armando Laudicina ◽  
Gian Luigi Garbini ◽  
...  

The effectiveness of adding compost and the plant Medicago sativa in improving the quality of a soil historically contaminated by polychlorinated biphenyls (PCBs) was tested in greenhouse microcosms. Plant pots, containing soil samples from an area contaminated by PCBs, were treated with the compost and the plant, separately or together. Moreover, un-treated and un-planted microcosms were used as controls. At fixed times (1, 133 and 224 days), PCBs were analysed and the structure (cell abundance, phylogenetic characterization) and functioning (cell viability, dehydrogenase activity) of the natural microbial community were also measured. The results showed the effectiveness of the compost and plant in increasing the microbial activity, cell viability, and bacteria/fungi ratio, and in decreasing the amount of higher-chlorinated PCBs. Moreover, a higher number of α-Proteobacteria, one of the main bacterial groups involved in the degradation of PCBs, was found in the compost and plant co-presence.


Author(s):  
Jason M. Wood ◽  
Eric D. Becraft ◽  
Daniel Krizanc ◽  
Frederick M. Cohan ◽  
David M. Ward

AbstractBackgroundMicrobial systematists have used molecular cutoffs to classify the vast diversity present within a natural microbial community without invoking ecological theory. The use of ecological theory is needed to identify whether or not demarcated groups are the ecologically distinct, fundamental units (ecotypes), necessary for understanding the system. Ecotype Simulation, a Monte-Carlo approach to modeling the evolutionary dynamics of a microbial population based on the Stable Ecotype Model of microbial speciation, has proven useful for finding these fundamental units. For instance, predicted ecotypes of Synechococcus forming microbial mats in Yellowstone National Park hot springs, which were previously considered to be a single species based on phenotype, have been shown to be ecologically distinct, with specialization to different temperature and light levels. Unfortunately, development of high-throughput DNA sequencing methods has outpaced the ability of the program to analyze all of the sequence data produced.ResultsWe developed an improved version of the program called Ecotype Simulation 2, which can rapidly analyze alignments of very large sequence datasets. For instance, while the older version takes days to analyze 200 sequences, the new version can analyze 1.92 × 105 sequences in about six hours. The faster simulation identified similar ecotypes as found with the slower version, but from larger amounts of sequence data.ConclusionsBased on ecological theory, Ecotype Simulation 2 provides a much-needed approach that will help guide microbial ecologists and systematists to the natural, fundamental units of bacterial diversity.


2020 ◽  
Author(s):  
Magdalena J. Mayr ◽  
Matthias Zimmermann ◽  
Jason Dey ◽  
Bernhard Wehrli ◽  
Helmut Bürgmann

Abstract. In freshwater lakes, large amounts of methane are produced in anoxic sediments. Methane-oxidizing bacteria effectively convert this potent greenhouse gas into biomass and carbon dioxide. These bacteria are present throughout the water column where methane concentrations can range from nanomolar to millimolar concentrations. In this study, we tested the hypothesis that methanotroph assemblages in seasonally stratified lakes are adapted to the contrasting methane concentrations in the epi- and hypolimnion. We further hypothesized that lake overturn would change the methane oxidation kinetics as more methane becomes available in the epilimnion. Together with the change of methane oxidation kinetics, we investigated changes in the transcription of genes encoding methane monooxygenase, the enzyme responsible for the first step of methane oxidation, with metatranscriptomics. We show that the half-saturation constant (Km) for methane, obtained from laboratory experiments with the natural microbial community, differed by two orders of magnitude between epi- and hypolimnion during stable stratification. During lake overturn, however, the kinetic constants in the epi- and hypolimnion converged along with a change of the transcriptionally active methanotroph assemblage. Conventional particulate methane monooxygenase appeared to be responsible for methane oxidation under different methane concentrations. Our results suggest that methane availability is important for creating niches for methanotroph assemblages with well-adapted methane-oxidation kinetics. This rapid selection and succession of adapted lacustrine methanotroph assemblages allows high methane removal efficiency of more than 90 % to be maintained even under rapidly changing conditions during lake overturn. Consequently, only a small fraction of methane stored in the anoxic hypolimnion is emitted to the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document