scholarly journals Effects of Sulfamethoxazole on Growth and Antibiotic Resistance of A Natural Microbial Community

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1262
Author(s):  
Jasmin Rauseo ◽  
Anna Barra Caracciolo ◽  
Francesca Spataro ◽  
Andrea Visca ◽  
Nicoletta Ademollo ◽  
...  

Diffuse environmental antibiotic and antibiotic resistance gene contamination is increasing human and animal exposure to these emerging compounds with a consequent risk of reduction in antibiotic effectiveness. The present work investigated the effect of the antibiotic sulfamethoxazole (SMX) on growth and antibiotic resistance genes of a microbial community collected from an anaerobic digestion plant fed with cattle manure. Digestate samples were used as inoculum for concentration-dependent experiments using SMX at various concentrations. The antibiotic concentrations affecting the mixed microbial community in terms of growth and spread of resistant genes (sul1, sul2) were investigated through OD (Optical Density) measures and qPCR assays. Moreover, SMX biodegradation was assessed by LC-MS/MS analysis. The overall results showed that SMX concentrations in the range of those found in the environment did not affect the microbial community growth and did not select for antibiotic-resistant gene (ARG) maintenance or spread. Furthermore, the microorganisms tested were able to degrade SMX in only 24 h. This study confirms the complexity of antibiotic resistance spread in real matrices where different microorganisms coexist and suggests that antibiotic biodegradation needs to be included for fully understanding the resistance phenomena among bacteria.

2019 ◽  
Author(s):  
Katariina Pärnänen ◽  
Jenni Hultman ◽  
Reetta Satokari ◽  
Samuli Rautava ◽  
Regina Lamendella ◽  
...  

SummaryInfants are at a high risk of acquiring infections caused by antibiotic resistant bacterial strains. Antibiotic resistance gene (ARG) load is typically higher in newborns than in adults, but it is unknown which factors besides antibiotic treatment affect the load. Our study demonstrates that inclusion of any formula in the newborn diet causes shifts in microbial community composition that result in higher ARG loads in formula-fed infants compared to infants not fed formula. The effect of formula was especially strong in premature newborns and newborns treated with antibiotics. Interestingly, antibiotics alone without formula did not have a detectable impact on the ARG load of the newborn gut. We also observed that formula-fed infants had enriched numbers of pathogenic species and were depleted in typical infant gut species such as Bifidobacterium bifidum. The results suggest infant feeding choices should include assessment of risks associated with elevated ARG abundance.


2017 ◽  
Vol 16 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Nusrat Nahar ◽  
Ridwan Bin Rashid

Vibrio cholerae has long been reported as an important cause of death in developing countries. The study detected the virulence and antibiotic resistance gene of eight V. cholerae isolates through in silico tools. Cholera toxins, ctxA and ctxB were found in six isolates (75%). Seventy-five percent isolates were also found to be positive for zonula occludens toxin, zot which is known to increase the permeability by altering the tight junction of the small intestine. Accessory cholera enterotoxin ace, responsible for fluid accumulation, was detected in four V. cholerae strains. Seven isolates (87.5%) were positive for toxin-coregulated pilus, tcp which helps the bacteria to adhere to gut mucosa. Both ompW and toxR genes were found in 87.5% of the isolates. Twenty-five percent isolates harboured strA, strB, sulII, dfrA1, floR genes and SXT element demonstrating that they were multidrug-resistant (MDG) bacterium. One isolate was found to be positive for tetA gene while no erythromycin resistance gene, ermA and ermB was found. Virulence genes were found in all genotypes indicating that their distribution was not genotypeoriented while genotype 2 harboured no antibiotic resistance genes. This data helps to predict virulence genes associated with cholera and also demonstrates the presence of antibiotic resistance genes. Bacteria acquired the antibiotic resistance gene through natural process which cannot be stopped. So by analyzing the resistance pattern we can choose appropriate antibiotics. In silico study helps us to predict the antibiotic resistant genotypes and can easily identify antibiotic resistant strains which help us to treat cholera infections and reduce the morbidity and mortality rate of the infected individuals.Dhaka Univ. J. Pharm. Sci. 16(1): 77-85, 2017 (June)


2019 ◽  
Vol 65 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Nicole A. Lerminiaux ◽  
Andrew D.S. Cameron

A global medical crisis is unfolding as antibiotics lose effectiveness against a growing number of bacterial pathogens. Horizontal gene transfer (HGT) contributes significantly to the rapid spread of resistance, yet the transmission dynamics of genes that confer antibiotic resistance are poorly understood. Multiple mechanisms of HGT liberate genes from normal vertical inheritance. Conjugation by plasmids, transduction by bacteriophages, and natural transformation by extracellular DNA each allow genetic material to jump between strains and species. Thus, HGT adds an important dimension to infectious disease whereby an antibiotic resistance gene (ARG) can be the agent of an outbreak by transferring resistance to multiple unrelated pathogens. Here, we review the small number of cases where HGT has been detected in clinical environments. We discuss differences and synergies between the spread of plasmid-borne and chromosomal ARGs, with a special consideration of the difficulties of detecting transduction and transformation by routine genetic diagnostics. We highlight how 11 of the top 12 priority antibiotic-resistant pathogens are known or predicted to be naturally transformable, raising the possibility that this mechanism of HGT makes significant contributions to the spread of ARGs. HGT drives the evolution of untreatable “superbugs” by concentrating ARGs together in the same cell, thus HGT must be included in strategies to prevent the emergence of resistant organisms in hospitals and other clinical settings.


2014 ◽  
Vol 19 (3) ◽  
pp. 34-39
Author(s):  
M. V Podshivalova ◽  
Yu. A Kuzyutina ◽  
I. B Zakharova ◽  
Ya. A Lopasteyskaya ◽  
D. V Viktorov

In the paper there is presented a characteristics of antibiotic-resistant strains of Vibrio cholerae, isolated in the Volgograd region during the period of 1980-2000. There were studied cultural and morphological properties of the isolates, their biochemical activity, resistance to antibiotics of different classes, there was performed the detection of virulence genes and sequences of transmissible SXT-element. There was demonstrated the presence of different types of SXT in the content of the genome of the examined strains - SXT MO10 element with cluster of the antibiotic resistance gene sulII-strB-dfr18, SXT ET element carrying the sequences sulII dfrA1, and not having a resistance gene to aminoglycosides strB, and SXT S element with deleted cluster of antibiotic resistance genes.


2017 ◽  
Vol 1 (S1) ◽  
pp. 35-35
Author(s):  
Amy Elizabeth Langdon ◽  
Christopher Bulow ◽  
Kim Reske ◽  
Sherry Sun ◽  
Tiffany Hink ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Clostridium difficile is the most common cause of infectious antibiotic associated diarrhea. It is often refractory to antimicrobial therapy and fecal microbiota transplantation (FMT) is emerging as a therapeutic option. The objective is to characterize the direct effects of FMT on the gut microbiota. METHODS/STUDY POPULATION: Fecal specimens were obtained from a cohort of 29 subjects with recurrent C. difficile infection who received FMTs from 1 of 4 healthy donors as part of a phase 2 trial (Rebiotix). Fecal specimens were collected from the subject before FMT and up to 6 months post FMT. 16S rRNA sequencing and whole-genome shotgun sequencing were used to assess microbial community composition as compared by weighted Unifrac. RESULTS/ANTICIPATED RESULTS: Before treatment, the microbial community of subjects with C. difficile infection was highly distinct from the composition of the healthy donors in terms of metabolic profile. Quantification of phylogenetic community distance from donor by weighted Unifrac distance showed a significant decrease within the 1st week (Wilcoxon rank sum, p<0.01). This metric was predictive of both treatment failures and antibiotic resistance gene count (LR=22.45, p<0.0001). DISCUSSION/SIGNIFICANCE OF IMPACT: We conclude that distance from donor is a useful metric to quantify FMT success and that FMTs are a promising treatment for otherwise untreatable carriage of antibiotic resistance genes and organisms.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 874
Author(s):  
Periyasamy Sivalingam ◽  
John Poté ◽  
Kandasamy Prabakar

Over the past decades, the rising antibiotic resistance bacteria (ARB) are continuing to emerge as a global threat due to potential public health risk. Rapidly evolving antibiotic resistance and its persistence in the environment, have underpinned the need for more studies to identify the possible sources and limit the spread. In this context, not commonly studied and a neglected genetic material called extracellular DNA (eDNA) is gaining increased attention as it can be one of the significant drivers for transmission of extracellular ARGS (eARGs) via horizontal gene transfer (HGT) to competent environmental bacteria and diverse sources of antibiotic-resistance genes (ARGs) in the environment. Consequently, this review highlights the studies that address the environmental occurrence of eDNA and encoding eARGs and its impact on the environmental resistome. In this review, we also brief the recent dedicated technological advancements that are accelerating extraction of eDNA and the efficiency of treatment technologies in reducing eDNA that focuses on environmental antibiotic resistance and potential ecological health risk.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 230
Author(s):  
Shan Wan ◽  
Min Xia ◽  
Jie Tao ◽  
Yanjun Pang ◽  
Fugen Yu ◽  
...  

In this study, we used a metagenomic approach to analyze microbial communities, antibiotic resistance gene diversity, and human pathogenic bacterium composition in two typical landfills in China. Results showed that the phyla Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in the two landfills, and archaea and fungi were also detected. The genera Methanoculleus, Lysobacter, and Pseudomonas were predominantly present in all samples. sul2, sul1, tetX, and adeF were the four most abundant antibiotic resistance genes. Sixty-nine bacterial pathogens were identified from the two landfills, with Klebsiella pneumoniae, Bordetella pertussis, Pseudomonas aeruginosa, and Bacillus cereus as the major pathogenic microorganisms, indicating the existence of potential environmental risk in landfills. In addition, KEGG pathway analysis indicated the presence of antibiotic resistance genes typically associated with human antibiotic resistance bacterial strains. These results provide insights into the risk of pathogens in landfills, which is important for controlling the potential secondary transmission of pathogens and reducing workers’ health risk during landfill excavation.


Sign in / Sign up

Export Citation Format

Share Document