scholarly journals New locally (super)conformal gauge models in Bach-flat backgrounds

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Sergei M. Kuzenko ◽  
Michael Ponds ◽  
Emmanouil S. N. Raptakis

Abstract For every conformal gauge field $$ {h}_{\alpha (n)\overset{\cdot }{\alpha }(m)} $$ h α n α ⋅ m in four dimensions, with n ≥ m > 0, a gauge-invariant action is known to exist in arbitrary conformally flat backgrounds. If the Weyl tensor is non-vanishing, however, gauge invariance holds for a pure conformal field in the following cases: (i) n = m = 1 (Maxwell’s field) on arbitrary gravitational backgrounds; and (ii) n = m + 1 = 2 (conformal gravitino) and n = m = 2 (conformal graviton) on Bach-flat backgrounds. It is believed that in other cases certain lower-spin fields must be introduced to ensure gauge invariance in Bach-flat backgrounds, although no closed-form model has yet been constructed (except for conformal maximal depth fields with spin s = 5/2 and s = 3). In this paper we derive such a gauge-invariant model describing the dynamics of a conformal gauge field $$ {h}_{\alpha (3)\overset{\cdot }{\alpha }} $$ h α 3 α ⋅ coupled to a self-dual two-form. Similar to other conformal higher-spin theories, it can be embedded in an off-shell superconformal gauge-invariant action. To this end, we introduce a new family of $$ \mathcal{N} $$ N = 1 superconformal gauge multiplets described by unconstrained prepotentials ϒα(n), with n > 0, and propose the corresponding gauge-invariant actions on conformally-flat backgrounds. We demonstrate that the n = 2 model, which contains $$ {h}_{\alpha (3)\overset{\cdot }{\alpha }} $$ h α 3 α ⋅ at the component level, can be lifted to a Bach-flat background provided ϒα(2) is coupled to a chiral spinor Ωα. We also propose families of (super)conformal higher-derivative non-gauge actions and new superconformal operators in any curved space. Finally, through considerations based on supersymmetry, we argue that the conformal spin-3 field should always be accompanied by a conformal spin-2 field in order to ensure gauge invariance in a Bach-flat background.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Sergei M. Kuzenko ◽  
Michael Ponds ◽  
Emmanouil S. N. Raptakis

Abstract We propose generalised $$ \mathcal{N} $$ N = 1 superconformal higher-spin (SCHS) gauge multiplets of depth t, $$ {\Upsilon}_{\alpha (n)\overset{\cdot }{\alpha }(m)}^{(t)} $$ ϒ α n α ⋅ m t , with n ≥ m ≥ 1. At the component level, for t > 2 they contain generalised conformal higher-spin (CHS) gauge fields with depths t − 1, t and t + 1. The supermultiplets with t = 1 and t = 2 include both ordinary and generalised CHS gauge fields. Super-Weyl and gauge invariant actions describing the dynamics of $$ {\Upsilon}_{\alpha (n)\overset{\cdot }{\alpha }(m)}^{(t)} $$ ϒ α n α ⋅ m t on conformally-flat superspace backgrounds are then derived. For the case n = m = t = 1, corresponding to the maximal-depth conformal graviton supermultiplet, we extend this action to Bach-flat backgrounds. Models for superconformal non-gauge multiplets, which are expected to play an important role in the Bach-flat completions of the models for $$ {\Upsilon}_{\alpha (n)\overset{\cdot }{\alpha }(m)}^{(t)} $$ ϒ α n α ⋅ m t , are also provided. Finally we show that, on Bach-flat backgrounds, requiring gauge and Weyl invariance does not always determine a model for a CHS field uniquely.


1996 ◽  
Vol 11 (08) ◽  
pp. 1367-1389 ◽  
Author(s):  
M.A. DE ANDRADE ◽  
O.M. DEL CIMA

In this work the supersymmetric gauge-invariant action for the massive Abelian N=1 super-QED 2+2 in the Atiyah-Ward space-time (D=2+2) is formulated. The questions concerning the scheme of the gauge invariance in D=2+2 by means of gauging the massive N=1 super-QED 2+2 are investigated. We study how to ensure the gauge invariance at the expense of the introduction of a complex vector superfield. We discuss the Wess-Zumino gauge and thereupon we conclude that, in this gauge, only the imaginary part of the complex vector field, Bμ, gauges a U(1) symmetry. whereas its real part gauges a Weyl symmetry. We build up the gauge-invariant massive term by introducing a pair of chiral and antichiral superfields with opposite U(1) charges. We carry out a dimensional reduction à la Scherk of the massive N=1 super-QED 2+2 action from D=2+2 to D=1+2. Truncations are needed in order to suppress nonphysical modes, and we end up with a parity-preserving N=1 super-QED 1+2 (rather than N=2) in D=1+2. Finally, we show that the N=1 super-QED 1+2 we have obtained is the supersymmetric version of τ3 QED .


2008 ◽  
Vol 23 (07) ◽  
pp. 1001-1017 ◽  
Author(s):  
B. SATHIAPALAN

The issue of space–time gauge invariance for the bosonic string has been earlier addressed using the loop variable formalism. In this paper the question of obtaining a gauge invariant action for the open bosonic string is discussed. The derivative with respect to ln a (where a is a worldsheet cutoff) of the partition function — which is first normalized by dividing by the integral of the two-point function of a marginal operator — is a candidate for the action. Applied to the zero-momentum tachyon it gives a tachyon potential that is similar to those that have been obtained using Witten's background independent formalism. This procedure is easily made gauge invariant in the loop variable formalism by replacing ln a by Σ which is the generalization of the Liouville mode that occurs in this formalism. We also describe a method of resumming the Taylor expansion that is done in the loop variable formalism. This allows one to see the pole structure of string amplitudes that would not be visible in the original loop variable formalism.


2017 ◽  
Vol 32 (03) ◽  
pp. 1750019 ◽  
Author(s):  
Everton M. C. Abreu ◽  
Rafael L. Fernandes ◽  
Albert C. R. Mendes ◽  
Jorge Ananias Neto ◽  
Mario Jr. Neves

The interest in higher derivative field theories has its origin mainly in their influence concerning the renormalization properties of physical models and to remove ultraviolet divergences. In this paper, we have introduced the non-commutative (NC) version of the Podolsky theory and we investigated the effect of the non-commutativity over its original gauge invariance property. We have demonstrated precisely that the non-commutativity spoiled the primary gauge invariance of the original action under this primary gauge transformation. After that we have used the Noether dualization technique to obtain a dual and gauge invariant action. We have demonstrated that through the introduction of a Stueckelberg field in this NC model, we can also recover the primary gauge invariance. In this way, we have accomplished a comparison between both methods.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Ali Akil ◽  
Xi Tong

Abstract We point out the necessity of resolving the apparent gauge dependence in the quantum corrections of cosmological observables for Higgs-like inflation models. We highlight the fact that this gauge dependence is due to the use of an asymmetric background current which is specific to a choice of coordinate system in the scalar manifold. Favoring simplicity over complexity, we further propose a practical shortcut to gauge-independent inflationary observables by using effective potential obtained from a polar-like background current choice. We demonstrate this shortcut for several explicit examples and present a gauge-independent prediction of inflationary observables in the Abelian Higgs model. Furthermore, with Nielsen’s gauge dependence identities, we show that for any theory to all orders, a gauge-invariant current term gives a gauge-independent effective potential and thus gauge-invariant inflationary observables.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Guillaume Bossard ◽  
Axel Kleinschmidt ◽  
Ergin Sezgin

Abstract We construct a pseudo-Lagrangian that is invariant under rigid E11 and transforms as a density under E11 generalised diffeomorphisms. The gauge-invariance requires the use of a section condition studied in previous work on E11 exceptional field theory and the inclusion of constrained fields that transform in an indecomposable E11-representation together with the E11 coset fields. We show that, in combination with gauge-invariant and E11-invariant duality equations, this pseudo-Lagrangian reduces to the bosonic sector of non-linear eleven-dimensional supergravity for one choice of solution to the section condi- tion. For another choice, we reobtain the E8 exceptional field theory and conjecture that our pseudo-Lagrangian and duality equations produce all exceptional field theories with maximal supersymmetry in any dimension. We also describe how the theory entails non-linear equations for higher dual fields, including the dual graviton in eleven dimensions. Furthermore, we speculate on the relation to the E10 sigma model.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Etienne Blanco ◽  
Andreas van Hameren ◽  
Piotr Kotko ◽  
Krzysztof Kutak

Abstract We calculate one loop scattering amplitudes for arbitrary number of positive helicity on-shell gluons and one off-shell gluon treated within the quasi-multi Regge kinematics. The result is fully gauge invariant and possesses the correct on-shell limit. Our method is based on embedding the off-shell process, together with contributions needed to retain gauge invariance, in a bigger fully on-shell process with auxiliary quark or gluon line.


1992 ◽  
Vol 07 (22) ◽  
pp. 5549-5561 ◽  
Author(s):  
KH. S. NIROV ◽  
P.N. PYATOV ◽  
A.V. RAZUMOV

For a wide class of gauge-invariant systems with open gauge algebras the Hamiltonian description is constructed and the Poisson brackets of the constraints are calculated. It is shown that in the case under consideration there arise only first class constraints.


1989 ◽  
Vol 04 (14) ◽  
pp. 1343-1353 ◽  
Author(s):  
T.E. CLARK ◽  
C.-H. LEE ◽  
S.T. LOVE

The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.


Sign in / Sign up

Export Citation Format

Share Document