Cauchy–Maxwell equations: A space–time conformal gauge theory for coupled electromagnetism and elasticity

2020 ◽  
Vol 126 ◽  
pp. 103542
Author(s):  
Pranesh Roy ◽  
Sanjeev Kumar ◽  
Debasish Roy
2003 ◽  
Vol 14 (01) ◽  
pp. 41-48 ◽  
Author(s):  
G. ZET ◽  
V. MANTA ◽  
S. BABETI

A deSitter gauge theory of gravitation over a spherical symmetric Minkowski space–time is developed. The "passive" point of view is adapted, i.e., the space–time coordinates are not affected by group transformations; only the fields change under the action of the symmetry group. A particular ansatz for the gauge fields is chosen and the components of the strength tensor are computed. An analytical solution of Schwarzschild–deSitter type is obtained in the case of null torsion. It is concluded that the deSitter group can be considered as a "passive" gauge symmetry for gravitation. Because of their complexity, all the calculations, inclusive of the integration of the field equations, are performed using an analytical program conceived in GRTensorII for MapleV. The program allows one to compute (without using a metric) the strength tensor [Formula: see text], Riemann tensor [Formula: see text], Ricci tensor [Formula: see text], curvature scalar [Formula: see text], field equations, and the integration of these equations.


2018 ◽  
Vol 33 (30) ◽  
pp. 1850182
Author(s):  
Mu Yi Chen ◽  
Su-Long Nyeo

The Hamiltonian of a nonrelativistic particle coupled to non-Abelian gauge fields is defined to construct a non-Abelian gauge theory. The Hamiltonian which includes isospin as a dynamical variable dictates the dynamics of the particle and isospin according to the Poisson bracket that incorporates the Lie algebraic structure of isospin. The generalized Poisson bracket allows us to derive Wong’s equations, which describe the dynamics of isospin, and the homogeneous (sourceless) equations for non-Abelian gauge fields by following Feynman’s proof of the homogeneous Maxwell equations.It is shown that the derivation of the homogeneous equations for non-Abelian gauge fields using the generalized Poisson bracket does not require that Wong’s equations be defined in the time-axial gauge, which was used with the commutation relation. The homogeneous equations derived by using the commutation relation are not Galilean and Lorentz invariant. However, by using the generalized Poisson bracket, it can be shown that the homogeneous equations are not only Galilean and Lorentz invariant but also gauge independent. In addition, the quantum ordering ambiguity that arises from using the commutation relation can be avoided when using the Poisson bracket.From the homogeneous equations, which define the “electric field” and “magnetic field” in terms of non-Abelian gauge fields, we construct the gauge and Lorentz invariant Lagrangian density and derive the inhomogeneous equations that describe the interaction of non-Abelian gauge fields with a particle.


2005 ◽  
Vol 20 (27) ◽  
pp. 6298-6306 ◽  
Author(s):  
PAOLO BENINCASA

Gauge/string correspondence provides an efficient method to investigate gauge theories. In this talk we discuss the results of the paper (to appear) by P. Benincasa, A. Buchel and A. O. Starinets, where the propagation of sound waves is studied in a strongly coupled non-conformal gauge theory plasma. In particular, a prediction for the speed of sound as well as for the bulk viscosity is made for the [Formula: see text] gauge theory in the high temperature limit. As expected, the results achieved show a deviation from the speed of sound and the bulk viscosity for a conformal theory. It is pointed out that such results depend on the particular gauge theory considered.


1967 ◽  
Vol 22 (9) ◽  
pp. 1328-1332 ◽  
Author(s):  
Jürgen Ehlers

The transition from the (covariantly generalized) MAXWELL equations to the geometrical optics limit is discussed in the context of general relativity, by adapting the classical series expansion method to the case of curved space time. An arbitrarily moving ideal medium is also taken into account, and a close formal similarity between wave propagation in a moving medium in flat space time and in an empty, gravitationally curved space-time is established by means of a normal hyperbolic optical metric.


1975 ◽  
Vol 28 (1) ◽  
pp. 127-137 ◽  
Author(s):  
M. Kasuya
Keyword(s):  

The construction of field theory which exhibits invariance under the Weyl group with parameters dependent on space–time is discussed. The method is that used by Utiyama for the Lorentz group and by Kibble for the Poincaré group. The need to construct world-covariant derivatives necessitates the introduction of three sets of gauge fields which provide a local affine connexion and a vierbein system. The geometrical implications are explored; the world geometry has an affine connexion which is not symmetric but is semi-metric. A possible choice of Lagrangian for the gauge fields is presented, and the resulting field equations and conservation laws discussed.


Sign in / Sign up

Export Citation Format

Share Document