similar genomic organization
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2020 ◽  
Vol 8 (5) ◽  
pp. 624
Author(s):  
Rachele Cagliani ◽  
Diego Forni ◽  
Alessandra Mozzi ◽  
Manuela Sironi

Cytomegaloviruses (CMVs) infect many mammals, including humans and non–human primates (NHPs). Human cytomegalovirus (HCMV) is an important opportunistic pathogen among immunocompromised patients and represents the most common infectious cause of birth defects. HCMV possesses a large genome and very high genetic diversity. NHP–infecting CMVs share with HCMV a similar genomic organization and coding content, as well as the course of viral infection. Recent technological advances have allowed the sequencing of several HCMV strains from clinical samples and provided insight into the diversity of NHP–infecting CMVs. The emerging picture indicates that, with the exclusion of core genes (genes that have orthologs in all herpesviruses), CMV genomes are relatively plastic and diverse in terms of gene content, both at the inter– and at the intra–species level. Such variability most likely underlies the strict species–specificity of these viruses, as well as their ability to persist lifelong and with relatively little damage to their hosts. However, core genes, despite their strong conservation, also represented a target of adaptive evolution and subtle changes in their coding sequence contributed to CMV adaptation to different hosts. Indubitably, important knowledge gaps remain, the most relevant of which concerns the role of viral genetics in HCMV–associated human disease.


2008 ◽  
Vol 74 (15) ◽  
pp. 4601-4609 ◽  
Author(s):  
Evelyn Durmaz ◽  
Michael J. Miller ◽  
M. Andrea Azcarate-Peril ◽  
Stephen P. Toon ◽  
Todd R. Klaenhammer

ABSTRACT Prophage Lrm1 was induced with mitomycin C from an industrial Lactobacillus rhamnosus starter culture, M1. Electron microscopy of the lysate revealed relatively few intact bacteriophage particles among empty heads and disassociated tails. The defective Siphoviridae phage had an isometric head of approximately 55 nm and noncontractile tail of about 275 nm with a small baseplate. In repeated attempts, the prophage could not be cured from L. rhamnosus M1, nor could a sensitive host be identified. Sequencing of the phage Lrm1 DNA revealed a genome of 39,989 bp and a G+C content of 45.5%. A similar genomic organization and mosaic pattern of identities align Lrm1 among the closely related Lactobacillus casei temperate phages A2, ΦAT3, and LcaI and with L. rhamnosus virulent phage Lu-Nu. Of the 54 open reading frames (ORFs) identified, all but 8 shared homology with other phages of this group. Five unknown ORFs were identified that had no homologies in the databases nor predicted functions. Notably, Lrm1 encodes a putative endonuclease and a putative DNA methylase with homology to a methylase in Lactococcus lactis phage Tuc2009. Possibly, the DNA methylase, endonuclease, or other Lrm1 genes provide a function crucial to L. rhamnosus M1 survival, resulting in the stability of the defective prophage in its lysogenic state. The presence of a defective prophage in an industrial strain could provide superinfection immunity to the host but could also contribute DNA in recombination events to produce new phages potentially infective for the host strain in a large-scale fermentation environment.


2001 ◽  
Vol 14 (2) ◽  
pp. 204-213 ◽  
Author(s):  
Yuwei Shen ◽  
Maw-shenq Chern ◽  
Francisco Goes Silva ◽  
Pamela Ronald

An 8.1-kb DNA fragment from Xanthomonas oryzae pv. oryzae that contains six open reading frames (ORF) was cloned. The ORF encodes proteins similar to flagellar proteins FlhB, FlhA, FlhF, and FliA, plus two proteins of unknown function, ORF234 and ORF319, from Bacillus subtilis and other organisms. These ORF have a similar genomic organization to those of their homologs in other bacteria. The flhF gene product, FlhF, has a GTP-binding motif conserved in its homologs. Unlike its homologs, however,X. oryzae pv. oryzae FlhF carries two transmembrane-like domains. Insertional mutations of the flhF gene with the omega cassette or the kanamycin resistance gene significantly retard but do not abolish the motility of the bacteria. Complementation of the mutants with the wild-type flhF gene restored the motility. The X. oryzae pv. oryzae FlhF interacts with itself; the disease resistance gene product XA21; and a protein homologous to the PilL protein of Pseudomonas aeruginosa, XooPilL, in the yeast two-hybrid system. The biological relevance of these interactions remains to be determined.


Sign in / Sign up

Export Citation Format

Share Document