Tectonic stress controls saucer-shaped sill geometry and emplacement mechanism

Geology ◽  
2020 ◽  
Vol 48 (9) ◽  
pp. 898-902
Author(s):  
R.J. Walker ◽  
S.P.A. Gill

Abstract Saucer-shaped sills are common in sedimentary basins worldwide. The saucer shape relates to asymmetric sill-tip stress distributions during intrusion caused by bending of the overburden. Most saucer-shaped sill models are constructed using a magma-analogue excess source pressure (Po) to drive host-rock failure, but without tectonic stress. Here we present axisymmetric finite-element simulations of radially propagating sills for a range of tectonic stress (σr) conditions, from horizontal tension (σr < 0) to horizontal compression (0 < σr). Response to σr falls into four regimes, based on sill geometry and failure mode of the host rock. The regimes are considered in terms of the ratio of tectonic stress versus magma source pressure R = σr/Po: (I) initially seeded sills transition to a dike during horizontal extension (R < 0); (II) with R increasing from 0 towards 1 (compressive σr), sill base length increases and sill incline decreases; (III) where 1 < R < 2, sill base length relatively decreases and sill incline increases; and (IV) where R > 2, sills grow as inclined sheets. Sills in regimes I–III grow dominantly by tensile failure of the host rock, whereas sills in regime IV grow by shear failure of the host rock. Varying σr achieves a range of sill geometries that match natural sill profiles. Tectonic stress therefore represents a primary control on saucer-shaped sill geometry and emplacement mechanism.

2017 ◽  
Vol 5 (3) ◽  
pp. SK23-SK38 ◽  
Author(s):  
Tobias Schmiedel ◽  
Sigurd Kjoberg ◽  
Sverre Planke ◽  
Craig Magee ◽  
Olivier Galland ◽  
...  

The emplacement of igneous intrusions into sedimentary basins mechanically deforms the host rocks and causes hydrocarbon maturation. Existing models of host-rock deformation are investigated using high-quality 3D seismic and industry well data in the western Møre Basin offshore mid-Norway. The models include synemplacement (e.g., elastic bending-related active uplift and volume reduction of metamorphic aureoles) and postemplacement (e.g., differential compaction) mechanisms. We use the seismic interpretations of five horizons in the Cretaceous-Paleogene sequence (Springar, Tang, and Tare Formations) to analyze the host rock deformation induced by the emplacement of the underlying saucer-shaped Tulipan sill. The results show that the sill, emplaced between 55.8 and 54.9 Ma, is responsible for the overlying dome structure observed in the seismic data. Isochron maps of the deformed sediments, as well as deformation of the younger postemplacement sediments, document a good match between the spatial distribution of the dome and the periphery of the sill. The thickness [Formula: see text] of the Tulipan is less than 100 m, whereas the amplitude [Formula: see text] of the overlying dome ranges between 30 and 70 m. Spectral decomposition maps highlight the distribution of fractures in the upper part of the dome. These fractures are observed in between hydrothermal vent complexes in the outer parts of the dome structure. The 3D seismic horizon interpretation and volume rendering visualization of the Tulipan sill reveal fingers and an overall saucer-shaped geometry. We conclude that a combination of different mechanisms of overburden deformation, including (1) elastic bending, (2) shear failure, and (3) differential compaction, is responsible for the synemplacement formation and the postemplacement modification of the observed dome structure in the Tulipan area.


1952 ◽  
Vol 19 (1) ◽  
pp. 54-56
Author(s):  
F. A. McClintock

Abstract A statistical analysis is developed to show how a microscopic shear failure can result in the apparent tensile failure of polycrystalline iron in rotary bending fatigue tests.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Chi Yao ◽  
Sizhi Zeng ◽  
Jianhua Yang

Anisotropy in strength and deformation of rock mass induced by bedding planes and interlayered structures is a vital problem in rock mechanics and rock engineering. The modified rigid block spring method (RBSM), initially proposed for modeling of isotropic rock, is extended to study the failure process of interlayered rocks under compression with different confining pressures. The modified rigid block spring method is used to simulate the initiation and propagation of microcracks. The Mohr–Coulomb criterion is employed to determine shear failure events and the tensile strength criterion for tensile failure events. Rock materials are replaced by an assembly of Voronoi-based polygonal blocks. To explicitly simulate structural planes and for automatic mesh generation, a multistep point insertion procedure is proposed. A typical experiment on interlayered rocks in literature is simulated using the proposed model. Effects of the orientation of bedding planes with regard to the loading direction on the failure mechanism and strength anisotropy are emphasized. Results indicate that the modified RBSM model succeeds in capturing main failure mechanisms and strength anisotropy induced by interlayered structures and different confining pressures.


2011 ◽  
Vol 99-100 ◽  
pp. 370-374 ◽  
Author(s):  
Yue Hong Qian ◽  
Ting Ting Cheng ◽  
Xiang Ming Cao ◽  
Chun Ming Song

During excavating the problem of unloading is a dynamic one essentially. Assuming the unloading ruled by a simple function and based on the Hamilton principal, the distribution of the stress field nearby the tunnel is obtained. The characteristics of the failure nearby the tunnel are analyzed considering the shear failure and tensile failure. The results show that the main mode of the shear failure, intact and tensile failure occurs from the tunnel. The characteristic of the shear failure, intact and tensile failure are one of the likely failure modes.


2019 ◽  
Vol 4 (3) ◽  
pp. 350-360
Author(s):  
Werlem Holanda ◽  
Anderson Costa dos Santos ◽  
Camila Cardoso Nogueira ◽  
Luiz Carlos Bertolino ◽  
Sérgio Bergamaschi ◽  
...  

Igneous intrusions in sedimentary basins are commonly related with mineralogical association changes in host-rock. At Sapopema region (Paraná State, southern Brazil), an extensive diabase sill (associated to Serra Geral Formation) was emplaced in pelitic-carbonate succession during post-Triassic. The sedimentary host-rock association includes mostly shale, siltstone and carbonate of the Permian Irati Formation. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) data revealed that heat transfer was not enough to cause modifications in mineral assemblage of the Taquaral Member (quartz + albite + muscovite + illite + kaolinite + chlorite). However, mineralogical content from Assistência Member presented changes probably caused by the intrusion of diabase sill (talc + pyrophyllite + calcite). Talc and calcite were formed due to the reaction between dolomite and quartz, while pyrophyllite was the product of reaction between kaolinite and quartz. EFEITOS DA INTRUSÃO IGNEA NA COMPOSIÇÃO MINERALÓGICA DA FORMAÇÃO IRATI, BACIA DO PARANÁ, SAPOPEMA (PR), SUL DO BRASIL ResumoAs intrusões ígneas em bacias sedimentares dão origem em geral a alterações mineralógicas da rocha hospedeira. Na região de Sapopema (Estado do Paraná, sul do Brasil), uma extensa soleira de diabásio (associada à Formação Serra Geral) pós-Triássica, foi intrudida numa sucessão sedimentar constituída por pelitos e carbonatos. A associação de rochas sedimentares hospedeiras, era principalmente constituída por folhelho, siltito e carbonato da Formação Irati, do Permiano. Dados de difração de raios X (DRX), microscopia eletrônica de varredura (MEV) e espectroscopia de energia dispersiva (EDS) revelaram que a transferência de calor não foi suficiente para causar modificações na composição mineralógica do membro Taquaral (quartzo + albita + moscovita + ilita + caulinita + clorita). No entanto, o conteúdo mineralógico do Membro Assistência apresentou alterações, provavelmente causadas pela intrusão do diabásio (talco + pirofilita + calcita). O talco e a calcita foram formados devido à reação entre dolomita e quartzo, enquanto a pirofilita foi o produto da reação entre a caulinita e o quartzo. Palavras-chave: Bacia Sedimentar. Intrusões Ígneas. Metamorfização de sedimentos. Reações mineralógicas. XRD. SEM / EDS.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tao Yang ◽  
Yunkang Rao ◽  
Huailin Chen ◽  
Bing Yang ◽  
Jiangrong Hou ◽  
...  

Understanding the failure mechanism and failure modes of multiface slopes in the Wenchuan earthquake can provide a scientific guideline for the slope seismic design. In this paper, the two-dimensional particle flow code (PFC2D) and shaking table tests are used to study the failure mechanism of multiface slopes. The results show that the failure modes of slopes with different moisture content are different under seismic loads. The failure modes of slopes with the moisture content of 5%, 8%, and 12% are shattering-shallow slip, tension-shear slip, and shattering-collapse slip, respectively. The failure mechanism of slopes with different water content is different. In the initial stage of vibration, the slope with 5% moisture content produces tensile cracks on the upper surface of the slope; local shear slip occurs at the foot of the slope and develops rapidly; however, a tensile failure finally occurs. In the slope with 8% moisture content, local shear cracks first develop and then are connected into the slip plane, leading to the formation of the unstable slope. A fracture network first forms in the slope with 12% moisture content under the shear action; uneven dislocation then occurs in the slope during vibration; the whole instability failure finally occurs. In the case of low moisture content, the tensile crack plays a leading role in the failure of the slope. But the influence of shear failure becomes greater with the increase of the moisture content.


2015 ◽  
Author(s):  
Robert D. Barree ◽  
Jennifer L. Miskimins

Abstract In 1898, Kirsch published equations describing the elastic stresses around a circular hole that are still used today in wellbore pressure breakdown calculations. These equations are standard instruments used in multiple areas of petroleum engineering, however, the original equations were developed strictly for vertical well settings. In today's common directional or horizontal well situations, the equations need adjusted for both deviation from the vertical plane and orientation to the maximum and minimum horizontal in-situ stress anisotropy. This paper provides the mathematical development of these modified breakdown equations, along with examples of the implications in varying strike-slip and pore pressure settings. These examples show conditions where it is not unusual for breakdown pressure gradients to exceed 1.0 psi/ft and describes why certain stages in "porpoising" horizontal wells experience extreme breakdown issues during hydraulic fracturing treatments. The paper also discusses how, in most directional situations, the wellbore will almost always fail initially in a longitudinal direction at the borehole wall, after which the far-field stresses will take over and transverse components can be developed. Tortuosity and near wellbore friction pressure can actually add to forcing the initiation of such longitudinal fractures, which can then have cascading effects on other growth parameters such as cluster-to-cluster and stage-to-stage stress shadowing. Special considerations for highly laminated anisotropic formations, where shear failure of the wellbore may precede or preclude tensile failure, are also introduced. Such failure behaviors have significant implications on near wellbore conductivity requirements and can also greatly impact well production and recovery efforts.


1998 ◽  
Vol 26 ◽  
pp. 370-376 ◽  
Author(s):  
Erik Hestnes

Slushflows — flowing mixtures of water and snow — are a major natural hazard in Norway. Knowledge gathered by the Norwegian Geotechnical Institute during 25 years of slushflow consulting and research is presented. The variation in regional occurrence is described and related to climatic premises and ground conditions. The principal ideas about slushflow release, down-slope propagation and run-out are outlined. They are closely related to the rate and duration of water supply, snowpack properties and geomorphic factors. Slushflow release is caused by basal shear failure aided by water pressure to cause loss of basal support and finally tensile failure through the snowpack. Our methods of hazard evaluation and acute-hazard prediction and warning are summarized, including the estimation of water supply based on meteorological data. The results of a worldwide questionnaire on slushflows, literature studies and scientific contacts, indicate that slushflows occur in all countries having a seasonal snow cover and that the results of our studies in Norway have a general validity.


2019 ◽  
Vol 275 ◽  
pp. 02018
Author(s):  
Jing Zhang ◽  
Xiamin Hu ◽  
Wan Hong ◽  
Bing Zhang ◽  
Chengli Zhang

This paper presents an experimental investigation of bending performance of composite sandwich panels with new mixed core, sandwich panels were tested by four-point bending test. Parametric study was conducted to investigate the influence of different core materials on the failure mode, ultimate bearing capacity, stiffness and ductility of composite sandwich panels. The results of the experimental investigation showed that the mixed core can change the failure mode of sandwich panels. The failure mode of wooden panels is characterized by tensile failure of bottom wood, and the failure mode of composite sandwich panels with wood core is that the surface layer and core are stripped and the webs are damaged by shear, while the failure mode of composite sandwich panels with wood and polyurethane foam mixed core is the shear failure of the web. Composite sandwich panels with GFRP-wood-polyurethane foam core have better bending performance and can effectively reduce the weight of panels.


Sign in / Sign up

Export Citation Format

Share Document